Олег ОдинцовОбыкновенные дифференциальные уравнения
Справочник по элементарным функциям
Методы вычисления неопределенных интегралов

Лемма о вложенных отрезках (принцип Коши – Кантора)

Лемма о вложенных отрезках.
Определение вложенных отрезков. Доказательство леммы Коши – Кантора о вложенных отрезках.

Пусть a и b – два действительных числа (). И пусть . Множество чисел x, удовлетворяющих неравенствам , называется отрезком с концами a и b. Отрезок обозначается так: .

Определение вложенных отрезков

Последовательность числовых отрезков

называется последовательностью вложенных отрезков, если каждый последующий отрезок содержится в предыдущем:
.
То есть концы отрезков связаны неравенствами:
.

Лемма о вложенных отрезках (принцип Коши – Кантора)

Для любой последовательности вложенных отрезков существует точка , принадлежащая всем этим отрезкам.
Если длины отрезков стремятся к нулю:
,
то такая точка единственная.

Эту лемму также называют теоремой о вложенных отрезках или принципом Коши – Кантора.

Доказательство

Для доказательства первой части леммы, воспользуемся аксиомой полноты действительных чисел.

Аксиома полноты действительных чисел заключается в следующем. Пусть множества A и B есть два подмножества действительных чисел , таких что для любых двух элементов и этих множеств выполняется неравенство . Тогда существует такое действительное число c, что для всех и выполняются неравенства:
.

Применим эту аксиому. Пусть множество A есть множество левых концов отрезков, а множество B – правых. Тогда между двумя любыми элементами этих множеств выполняется неравенство . Тогда из аксиомы полноты действительных чисел следует, что существует такое число c, что для всех n выполняются неравенства:
.
Оно и означает, что точка c принадлежит всем отрезкам.

Докажем вторую часть леммы.

Пусть . В соответствии с определением предела последовательности, это означает, что для любого положительного числа существует такое натуральное число N, зависящее от ε, что для всех натуральных n > N выполняется неравенство
(1)   .

Допустим противное. Пусть существует две различные точки c1 и c2, c1 ≠ c2, принадлежащие всем отрезкам. Это означает, что для всех n выполняются следующие неравенства:
;
.
Отсюда
.
Применяя (1) имеем:
.
Это неравенство должно выполняться для любых положительных значений ε. Отсюда следует, что
c1 = c2.

Лемма доказана.

Замечание

Существование точки, принадлежащей всем отрезкам, вытекает из аксиомы полноты, которая справедлива для действительных чисел. К рациональным числам эта аксиома не применима. Поэтому к множеству рациональных чисел, лемма о вложенных отрезках также не применима.

Например, мы могли бы выбрать отрезки так, чтобы и левые и правые концы сходились к иррациональному числу . Тогда любое рациональное число, при увеличении n, всегда выпадало бы из системы отрезков. Единственное число, которое принадлежит всем отрезком – это иррациональное число .

Использованная литература:
О.В. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.

.     Опубликовано: