Олег ОдинцовОбыкновенные дифференциальные уравнения
Справочник по элементарным функциям
Методы вычисления неопределенных интегралов

Предел последовательности – основные теоремы и свойства

Предел последовательности
Приводятся формулировки основных теорем и свойств числовых последовательностей, имеющих предел. Содержится определение последовательности и ее предела. Рассмотрены арифметические действия с последовательностями, свойства, связанные с неравенствами, критерии сходимости, свойства бесконечно малых и бесконечно больших последовательностей.

Последовательности

Числовой последовательностью называется закон (правило), согласно которому, каждому натуральному числу ставится в соответствие число .
Элемент называют n-м членом или элементом последовательности.
Далее мы будем считать, что элементами последовательности являются действительные числа.

Более подробно см. страницу   Определение числовой последовательности >>>.

Последовательность называется ограниченной, если существует такое число M, что для всех действительных n.

Верхней гранью последовательности называют наименьшее из чисел, ограничивающее последовательность сверху. То есть это такое число s, для которого для всех n и для любого , найдется такой элемент последовательности , превосходящий s′: .

Нижней гранью последовательности называют наибольшее из чисел, ограничивающее последовательность снизу. То есть это такое число i, для которого для всех n и для любого , найдется такой элемент последовательности , меньший i′: .

Верхнюю грань также называют точной верхней границей, а нижнюю грань – точной нижней границей. Понятия верхней и нижней граней справедливы не только к последовательностям, но и к любым множествам действительных чисел.

Определение предела последовательности

Число a называется пределом последовательности , если для любого положительного числа существует такое натуральное число N, зависящее от , что для всех натуральных выполняется неравенство
.
Предел последовательности обозначается так:
.
Или     при   .

С помощью логических символов существования и всеобщности определение предела можно записать следующим образом:
.

Открытый интервал (a – ε, a + ε) называют ε - окрестностью точки a.

Последовательность, у которой существует предел называется сходящейся последовательностью. Также говорят, что последовательность сходится к a. Последовательность, не имеющая предела, называется расходящейся.

Точка a не является пределом последовательности , если существует такое , что для любого натурального n существует такое натуральное m > n, что
.
.
Это означает, что можно выбрать такую ε - окрестностью точки a, за пределами которой будет находиться бесконечное число членов последовательности.

Более подробно материал изложен на странице
Определение предела последовательности >>>.

Свойства предела последовательности

Основные свойства

Если каждый элемент последовательности равен одному и тому же числу C: , то эта последовательность имеет предел, и этот предел равен числу C.

Если у последовательности отбросить или изменить первые m членов, то это не повлияет на ее сходимость.

Если последовательность имеет предел, то она ограничена.

Если последовательность имеет предел a, то, за пределами любой окрестности точки a, может находиться только конечное число членов последовательности.

Если число a не является пределом последовательности , то существует такая окрестность точки a, за пределами которой находится бесконечное число членов последовательности.

Теорема единственности предела числовой последовательности. Последовательность не может иметь два различных предела.

Если последовательность имеет предел a и p и q любые числа, для которых выполняется соотношение , то существует такой номер N, что для всех , члены последовательности принадлежат интервалу
.

Доказательства основных свойств приведены на странице
Основные свойства пределов последовательностей >>>.

Арифметические действия с пределами

Пусть существуют пределы   и   последовательностей и . И пусть C – постоянная, то есть заданное число. Тогда
;
;
;
,   если .
В случае частного предполагается, что для всех n.

Если , то .

Доказательства арифметических свойств приведены на странице
Арифметические свойства конечных пределов последовательностей >>>.

Свойства, связанные с неравенствами

Если    и элементы последовательности, начиная с некоторого номера, удовлетворяют неравенству , то и предел a этой последовательности удовлетворяет неравенству .

Если    и элементы последовательности, начиная с некоторого номера, принадлежат замкнутому интервалу (сегменту) , то и предел a также принадлежит этому интервалу:   .

Если    и    и элементы последовательностей, начиная с некоторого номера, удовлетворяют неравенству  , то   .

Если     и   , то   .

Пусть    и  . Если a < b, то найдется такое натуральное число N, что для всех n > N выполняется неравенство .

Доказательства свойств, связанных с неравенствами приведены на странице
Свойства пределов последовательностей, связанные с неравенствами >>>.

Бесконечно большая и бесконечно малая последовательности

Бесконечно малая последовательность

Последовательность называется бесконечно малой последовательностью, если ее предел равен нулю:
.

Сумма и разность конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.

Произведение ограниченной последовательности на бесконечно малую является бесконечно малой последовательностью.

Произведение конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.

Для того, чтобы последовательность имела предел a, необходимо и достаточно, чтобы , где – бесконечно малая последовательность.

Доказательства свойств бесконечно малых последовательностей приведены на странице
Бесконечно малые последовательности – определение и свойства >>>.

Бесконечно большая последовательность

Последовательность называется бесконечно большой последовательностью, если для любого положительного числа существует такое натуральное число N, зависящее от , что для всех натуральных выполняется неравенство
.
В этом случае пишут
.
Или     при  .
Говорят, что стремится к бесконечности.

Если , начиная с некоторого номера N, то
.
Если же , то
.

Если последовательность являются бесконечно большой, то, начиная с некоторого номера N, определена последовательность , которая является бесконечно малой. Если являются бесконечно малой последовательностью с отличными от нуля членами, то последовательность является бесконечно большой.

Если последовательность бесконечно большая, а последовательность ограничена, то
.

Если абсолютные значения элементов последовательности ограничены снизу положительным числом ( ), а – бесконечно малая с неравными нулю членами, то
.

Более подробно определение бесконечно большой последовательности с примерами приводится на странице
Определение бесконечно большой последовательности >>>.
Доказательства свойств бесконечно больших последовательностей приведены на странице
Свойства бесконечно больших последовательностей >>>.

Критерии сходимости последовательностей

Монотонные последовательности

Последовательность называется строго возрастающей, если для всех n выполняется неравенство:
.
Соответственно, для строго убывающей последовательности выполняется неравенство:
.
Для неубывающей:
.
Для невозрастающей:
.

Отсюда следует, что строго возрастающая последовательность также является неубывающей. Строго убывающая последовательность также является невозрастающей.

Последовательность называется монотонной, если она неубывающая или невозрастающая.

Монотонная последовательность ограничена, по крайней мере, с одной стороны значением . Неубывающая последовательность ограничена снизу:   . Невозрастающая последовательность ограничена сверху:   .

Теорема Вейерштрасса. Для того чтобы неубывающая (невозрастающая) последовательность имела предел, необходимо и достаточно, чтобы она была ограниченной сверху (снизу ). Здесь M – некоторое число.

Поскольку любая неубывающая (невозрастающая) последовательность ограничена снизу (сверху), то теорему Вейерштрасса можно перефразировать следующим образом:

Для того чтобы монотонная последовательность имела предел, необходимо и достаточно, чтобы она была ограниченной: .

Монотонная неограниченная последовательность имеет бесконечный предел, равный для неубывающей и для невозрастающей последовательности.

Критерий Коши сходимости последовательности

Условие Коши. Последовательность удовлетворяет условию Коши, если для любого существует такое натуральное число , что для всех натуральных чисел n и m, удовлетворяющих условию , выполняется неравенство
.
Последовательности, удовлетворяющие условию Коши, также называют фундаментальными последовательностями.

Критерий Коши сходимости последовательности. Для того, чтобы последовательность сходилась, необходимо и достаточно, чтобы она удовлетворяла условию Коши.

Подпоследовательности

Теорема Больцано – Вейерштрасса. Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность. А из любой неограниченной последовательности – бесконечно большую подпоследовательность, сходящуюся к или к .

Использованная литература:
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
В.А. Зорич. Математический анализ. Часть 1. Москва, 1997.
В.А. Ильин, Э.Г. Позняк. Основы математического анализа. Часть 1. Москва, 2005.

Опубликовано: