Олег ОдинцовОбыкновенные дифференциальные уравнения
Справочник по элементарным функциям
Методы вычисления неопределенных интегралов

Вывод производных арктангенса (arctg x)′ и арккотангенса (arcctg x)′

Производные арктангенса и арккотангенса
Представлен вывод производных первого порядка арктангенса (arctg x)′ и арккотангенса (arcctg x)′. Для каждой из функций, вывод дан двумя способами.

Вывод производной арктангенса

Здесь мы полагаем, что нам известна производная тангенса:
.
Далее мы выводим формулу производной арктангенса, учитывая, что арктангенс является функцией, обратной к тангенсу.

По формуле производной обратной функции

Рассмотрим функцию арктангенс:
y = arctg x.
Здесь независимая переменная x может принимать любые действительные значения:
.
Зависимая переменная y может принимать значения от – π/2 до + π/2:
.
Арктангенс является функцией, обратной к тангенсу:
x = tg y.

Для определения его производной, применим формулу производной обратной функции:
(1)   .

Производная тангенса нам известна:
.
Здесь .
Поменяем местами обозначения переменных x и y. Тогда
,
где .
Подставим в формулу (1):
(2)   .
Здесь
y = arctg x;
x = tg y.

Теперь выразим правую часть формулы (2) через переменную x. Для этого воспользуемся формулой     и выполним преобразования:
.
Отсюда
.
Подставим в (2):
.

Тем самым мы вывели формулу производной арктангенса:
.

Второй способ

Поскольку арктангенс и тангенс являются взаимно обратными функциями, то
(3)   .
Продифференцируем это уравнение по переменной x. То есть найдем производные левой и правой части и приравняем их друг к другу:
(4)   .

Из таблицы производных имеем:
.

Производную левой части находим по формуле производной сложной функции:
.
Здесь .
Далее выполним преобразования:
.
Тогда
.

Подставим в (4):
.
Отсюда
.

Вывод производной арккотангенса

Используя связь между арктангенсом и арккотангенсом

Производную арккотангенса можно получить из производной арктангенса, если воспользоваться связью между арктангенсом и арккотангенсом:
.
Отсюда
.

По формуле производной обратной функции

Рассмотрим функцию арккотангенс:
y = arcctg x.
Здесь независимая переменная x может принимать любые действительные значения:
.
Зависимая переменная y может принимать значения от 0 до π:
.
Арккотангенс является функцией, обратной к котангенсу:
x = ctg y.

Для определения его производной, применим формулу производной обратной функции:
(1)   .

Считаем, что производная котангенса нам известна:
.
Здесь .
Поменяем местами обозначения переменных x и y. Тогда
,
где .
Подставим в формулу (1):
(5)   .
Здесь
y = arcctg x;
x = ctg y.

Выразим правую часть формулы (5) через переменную x. Для этого выполним преобразования:
.
Отсюда
.
Подставим в (5):
.

Таким образом, мы вывели формулу производной арккотангенса:
.

Второй способ

Поскольку арккотангенс и котангенс являются взаимно обратными функциями, то
(6)   .
Продифференцируем это уравнение по переменной x:
(7)   .

Из таблицы производных находим:
.

Производную левой части находим по формуле производной сложной функции:
.
Здесь .
Далее выполним преобразования:
.
Тогда
.

Подставим в (7):
.
Отсюда
.

Опубликовано: