Олег ОдинцовОбыкновенные дифференциальные уравнения
Справочник по элементарным функциям
Методы вычисления неопределенных интегралов

Арктангенс, арккотангенс - свойства, графики, формулы

Даны все свойства арктангенса и арккотангенса, их графики, формулы, таблица арктангенсов и арккотангенсов. Выражения через комплексные числа, гиперболические функции. Производные, интегралы, разложения в степенные ряды.

Арктангенс, arctg

Арктангенс,   y = arctg x,   определен при     и имеет множество значений .

График функции арктангенс

График функции y=arctg(x)
График функции   y = arctg x

График арктангенса получается из графика тангенса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, множество значений ограничивают интервалом   , на котором функция монотонна. Такое определение называют главным значением арктангенса.

Арккотангенс, arcctg

Арккотангенс,   y = arcctg x,   определен при   и имеет множество значений .

График функции арккотангенс

График функции y=arcctg(x)
График функции   y = arcctg x

График арккотангенса получается из графика котангенса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом   , на котором функция монотонна. Такое определение называют главным значением арккотангенса.

Четность

Функция арктангенс является нечетной:
arctg(–x) = arctg(–tg arctg x) = arctg(tg(–arctg x)) = – arctg x

Функция арккотангенс не является четной или нечетной:
arcctg(–x) = arcctg(–ctg arcctg x) = arcctg(ctg(π–arcctg x)) = π – arcctg x ≠ ± arcctg x.

Свойства – экстремумы, возрастание, убывание

Основные свойства арктангенса и арккотангенса представлены в таблице.

  y = arctg x y = arcctg x
Область определения < x < < x <
Множество значений
Возрастание, убывание монотонно возрастает монотонно убывает
Максимумы, минимумы нет нет
Нули, y = 0 x = 0 нет
Точки пересечения с осью ординат, x = 0 y = 0 y = π/2
π
0

Таблица арктангенсов и арккотангенсов

В данной таблице представлены значения арктангенсов и арккотангенсов, в градусах и радианах, при некоторых значениях аргумента.

 x arctg x arcctg x
град. рад. град. рад.
– ∞ – 90° 180° π
– 60° 150°
– 1 – 45° 135°
– 30° 120°
0 0 90°
30° 60°
1 45° 45°
60° 30°
+ ∞ 90° 0

≈ 0,5773502691896258
≈ 1,7320508075688772

Формулы




Формулы суммы и разности


     при

     при

     при


     при

     при

     при

Выражения через логарифмы, комплексные числа


Выражения через гиперболические функции




Производные


Интегралы

Делаем подстановку   x = tg t   и интегрируем по частям:
;
;
;

Выразим арккотангенс через арктангенс:
.

Разложения в ряды

При   |x| ≤ 1   имеет место следующее разложение:
;
.

Обратные функции

Обратными к арктангенсу и арккотангенсу являются тангенс и котангенс, соответственно.

Следующие формулы справедливы на всей области определения:
tg(arctg x) = x    
ctg(arcctg x) = x    .

Следующие формулы справедливы только на множестве значений арктангенса и арккотангенса:
arctg(tg x) = x     при
arcctg(ctg x) = x     при .

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Опубликовано: