Методы решения физико-математических задач

Решение кубических уравнений

Кубическое уравнение с неизвестными корнями
Изложено, как решать кубические уравнения. Рассмотрен случай, когда известен один корень. Методы поиска целых и рациональных корней. Применение формул Кардано и Виета для решения любого кубического уравнения.

Здесь мы рассматриваем решение кубических уравнений вида
(1)   .
Далее считаем, что – это действительные числа.

Если исходное уравнение имеет вид:
(2)   ,
то разделив его на , получаем уравнение вида (1) с коэффициентами
.

Уравнение (1) имеет три корня: , и . Один из корней всегда действительный. Действительный корень мы обозначаем как . Корни и могут быть либо действительными, либо комплексно сопряженными. Действительные корни могут быть кратными. Например, если , то и – это двукратные корни (или корни кратности 2), а – простой корень.

Если известен один корень

Пусть нам известен один корень кубического уравнения (1). Обозначим известный корень как . Тогда разделив уравнение (1) на , получим квадратное уравнение. Решая квадратное уравнение, найдем еще два корня и .

Для доказательства воспользуемся тем, что кубический многочлен можно представить в виде:
.
Тогда, разделив (1) на , получаем квадратное уравнение.

Примеры деления многочленов представлены на странице
Деление и умножение многочлена на многочлен уголком и столбиком”.
Решение квадратных уравнений рассмотрено на странице
Корни квадратного уравнения”.

Если один из корней – целый

Если исходное уравнение имеет вид:
(2)   ,
и его коэффициенты , , , – целые числа, то можно попытаться найти целый корень. Если это уравнение имеет целый корень, то он является делителем коэффициента . Метод поиска целых корней заключается в том, что мы находим все делители числа и проверяем, выполняется ли для них уравнение (2). Если уравнение (2) выполняется, то мы нашли его корень. Обозначим его как . Далее делим уравнение (2) на . Получаем квадратное уравнение. Решая его, находим еще два корня.

Примеры определения целых корней даны на странице
Примеры разложения многочленов на множители > > >.

Поиск рациональных корней

Если в уравнении (2) , , , – целые числа, причем , и целых корней нет, то можно попытаться найти рациональные корни, то есть корни вида , где и – целые.

Для этого умножим уравнение (2) на и сделаем подстановку :
;
(3)   .
Далее ищем целые корни уравнения (3) среди делителей свободного члена .

Если мы нашли целый корень уравнения (3), то, возвращаясь к переменной , получаем рациональный корень уравнения (2):
.

Формулы Кардано и Виета для решения кубического уравнения

Если нам не известен ни один корень, и целых корней нет, то найти корни кубического уравнения можно по формулам Кардано.

Рассмотрим кубическое уравнение:
(1)   .
Сделаем подстановку:
.
После этого уравнение приводится к неполному или приведенному виду:
(4)   ,
где
(5)   ;   .

Формула Кардано для неполного (приведенного) кубического уравнения имеет вид:
;
;
;
;
.
По формуле Кардано, мы находим три корня величины . Затем, используя формулу   , находим значения величины .

После разделения кубических корней величины , формула Кардано принимает следующий вид:
(6)   ,   ,
где
(7)   ;   ;   ;
(8)   .

При , для и нужно выбирать действительные корни, которые автоматически связаны соотношением   . При этом мы получим одно действительное решение и два комплексно сопряженных и .

При имеем:
;   ;   .
В этом случае мы имеем два кратных действительных корня. Если , то мы имеем три кратных корня.

При мы имеем три действительных корня. При этом и – комплексные. Поэтому решение приводится к тригонометрической форме, которая имеет название формулы Виета:
(9)   ;
(10)   ,
где
(11)   ;   .

Примеры решений по формулам Кардано и Виета

Решить кубические уравнения:
;
.

Решение примеров > > >

Онлайн калькулятор > > >


Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Г. Корн, Справочник по математике для научных работников и инженеров, 2012.

.     Опубликовано:   Изменено:

Меню