Олег ОдинцовОбыкновенные дифференциальные уравнения
Справочник по элементарным функциям
Методы вычисления неопределенных интегралов

Теорема Виета для квадратных и других уравнений

Формулировка и доказательство теоремы Виета для квадратных уравнений. Обратная теорема Виета. Теорема Виета для кубических уравнений и уравнений произвольного порядка.

Квадратные уравнения

Теорема Виета

Пусть и обозначают корни приведенного квадратного уравнения
(1)   .
Тогда сумма корней равна коэффициенту при , взятому с обратным знаком. Произведение корней равно свободному члену:
;
.

Замечание по поводу кратных корней

Если дискриминант уравнения (1) равен нулю, то это уравнение имеет один корень. Но, чтобы избежать громоздких формулировок, принято считать, что в этом случае, уравнение (1) имеет два кратных, или равных, корня:
.

Доказательство первое

Найдем корни уравнения (1). Для этого применим формулу для корней квадратного уравнения:
;
;
.

Находим сумму корней:
.

Чтобы найти произведение, применим формулу:
.
Тогда

.

Теорема доказана.

Доказательство второе

Если числа и являются корнями квадратного уравнения (1), то
.
Раскрываем скобки.

.
Таким образом, уравнение (1) примет вид:
.
Сравнивая с (1) находим:
;
.

Теорема доказана.

Обратная теорема Виета

Пусть и есть произвольные числа. Тогда и являются корнями квадратного уравнения
,
где
(2)   ;
(3)   .

Доказательство обратной теоремы Виета

Рассмотрим квадратное уравнение
(1)   .
Нам нужно доказать, что если     и   , то и являются корнями уравнения (1).

Подставим (2) и (3) в (1):
.
Группируем члены левой части уравнения:
;
;
(4)   .

Подставим в (4) :
;
.
Уравнение выполняется. То есть число является корнем уравнения (1).

Подставим в (4) :
;
.
Уравнение выполняется. То есть число является корнем уравнения (1).

Теорема доказана.

Теорема Виета для полного квадратного уравнения

Теперь рассмотрим полное квадратное уравнение
(5)   ,
где , и есть некоторые числа. Причем .

Разделим уравнение (5) на :
.
То есть мы получили приведенное уравнение
,
где ;   .

Тогда теорема Виета для полного квадратного уравнения имеет следующий вид.

Пусть и обозначают корни полного квадратного уравнения
.
Тогда сумма и произведение корней определяются по формулам:
;
.

Теорема Виета для кубического уравнения

Аналогичным образом мы можем установить связи между корнями кубического уравнения. Рассмотрим кубическое уравнение
(6)   ,
где , , , есть некоторые числа. Причем .
Разделим это уравнение на :
(7)   ,
где , , .
Пусть , , есть корни уравнения (7) (и уравнения (6)). Тогда

.

Сравнивая с уравнением (7) находим:
;
;
.

Теорема Виета для уравнения n-й степени

Тем же способом можно найти связи между корнями , , ... , , для уравнения n-й степени
.

Теорема Виета для уравнения n-й степени имеет следующий вид:
;
;
;

.

Чтобы получить эти формулы мы записываем уравнение в следующем виде:
.
Затем приравниваем коэффициенты при , , , ... , и сравниваем свободный член.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
С.М. Никольский, М.К. Потапов и др., Алгебра: учебник для 8 класса общеобразовательных учреждений, Москва, Просвещение, 2006.

Опубликовано: