Олег ОдинцовОбыкновенные дифференциальные уравнения
Справочник по элементарным функциям
Методы вычисления неопределенных интегралов

Интегрирование методом замены переменной

Замена переменной в неопределенном интеграле. Формула преобразования дифференциалов. Примеры интегрирования. Примеры линейных подстановок.

Метод замены переменной

С помощью замены переменной можно вычислить простые интегралы и, в некоторых случаях, упростить вычисление более сложных.

Метод замены переменной заключается в том, что мы от исходной переменной интегрирования, пусть это будет x, переходим к другой переменной, которую обозначим как t. При этом мы считаем, что переменные x и t связаны некоторым соотношением x = x(t), или t = t(x). Например,   x = ln t,   x = sin t,   t = 2x + 1, и т.п. Нашей задачей является подобрать такую зависимость между x и t, чтобы исходный интеграл либо свелся к табличному, либо стал более простым.

Основная формула замены переменной

Рассмотрим выражение, которое стоит под знаком интеграла. Оно состоит из произведения подынтегральной функции, которую мы обозначим как f(x) и дифференциала dx:   . Пусть мы переходим к новой переменной t, выбрав некоторое соотношение x = x(t). Тогда мы должны выразить функцию f(x) и дифференциал dx через переменную t.

Чтобы выразить подынтегральную функцию f(x) через переменную t, нужно просто подставить вместо переменной x выбранное соотношение x = x(t).

Преобразование дифференциала выполняется так:
.
То есть дифференциал dx равен произведению производной x по t на дифференциал dt.

Тогда
.

На практике, чаще всего встречается случай, в котором мы выполняем замену, выбирая новую переменную как функцию от старой: t = t(x). Если мы догадались, что подынтегральную функцию можно представить в виде
,
где t′(x) – это производная t по x, то
.

Итак, основную формулу замены переменной можно представить в двух видах.
(1)   ,
где x – это функция от t.
(2)   ,
где t – это функция от x.

Важное замечание

В таблицах интегралов переменная интегрирования, чаще всего, обозначается как x. Однако стоит учесть, что переменная интегрирования может обозначаться любой буквой. И более того, в качестве переменной интегрирования может быть какое либо выражение.

В качестве примера рассмотрим табличный интеграл
.

Здесь x можно заменить любой другой переменной или функцией от переменной. Вот примеры возможных вариантов:
;
;
.

В последнем примере нужно учитывать, что при переходе к переменной интегрирования x, дифференциал преобразуется следующим образом:
.
Тогда
.

В этом примере заключена суть интегрирования подстановкой. То есть мы должны догадаться, что
.
После чего интеграл сводится к табличному.
.

Можно вычислить этот интеграл с помощью замены переменной, применяя формулу (2). Положим t = x2 + x. Тогда
;
;

.

Примеры интегрирования заменой переменной

1)   Вычислим интеграл
.
Замечаем, что   (sin x)′ = cos x. Тогда

.
Здесь мы применили подстановку t = sin x.

2)   Вычислим интеграл
.
Замечаем, что   . Тогда

.
Здесь мы выполнили интегрирование заменой переменной t = arctg x.

3)   Проинтегрируем
.
Замечаем, что . Тогда

. Здесь, при интегрировании, произведена замена переменной t = x2 + 1.

Линейные подстановки

Пожалуй, самыми распространенными являются линейные подстановки. Это замена переменной вида
t = ax + b,
где a и b – постоянные. При такой замене дифференциалы связаны соотношением
.

Примеры интегрирования линейными подстановками

A)   Вычислить интеграл
.
Решение.
.

B)   Найти интеграл
.
Решение.
Воспользуемся свойствами показательной функции.
.
ln 2 – это постоянная. Вычисляем интеграл.

.

C)   Вычислить интеграл
.
Решение.
Приведем квадратный многочлен в знаменателе дроби к сумме квадратов.
.
Вычисляем интеграл.

.

D)   Найти интеграл
.
Решение.
Преобразуем многочлен под корнем.

.
Интегрируем, применяя метод замены переменной   .

\frac1{\sqrt{2}} \ln \left| \; x + \frac34 + \sqrt{\left( x + \frac34 \right)^2 - \left( \frac34 \right)^2 } \; \right| + C.
Ранее мы получили формулу
.
Отсюда
.
Подставив это выражение, получим окончательный ответ.

E)   Вычислить интеграл
.
Решение.
Применим формулу произведения синуса и косинуса.
;
.
Интегрируем и делаем подстановки.


.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Опубликовано: