Олег ОдинцовОбыкновенные дифференциальные уравнения
Справочник по элементарным функциям
Методы вычисления неопределенных интегралов

Производная e в степени x и показательной функции

Производная e в степени x и показательной функции
Доказательство и вывод формул производной экспоненты (e в степени x) и показательной функции (a в степени x). Примеры вычисления производных от e^2x, e^3x и e^nx. Формулы производных высших порядков.

Производная экспоненты равна самой экспоненте (производная e в степени x равна e в степени x):
(1)   ( e x )′ = e x.

Производная показательной функции с основанием степени a равна самой функции, умноженной на натуральный логарифм от a:
(2)   .

Вывод формулы производной экспоненты, e в степени x

Экспонента – это показательная функция, у которой основание степени равно числу e, которое является следующим пределом:
.
Здесь может быть как натуральным, так и действительным числом. Далее мы выводим формулу (1) производной экспоненты.

Вывод формулы производной экспоненты

Рассмотрим экспоненту, e в степени x:
y = e x.
Эта функция определена для всех . Найдем ее производную по переменной x. По определению, производная является следующим пределом:
(3)   .

Преобразуем это выражение, чтобы свести его к известным математическим свойствам и правилам. Для этого нам понадобятся следующие факты:
А) Свойство экспоненты:
(4)   ;
Б) Свойство логарифма:
(5)   ;
В) Непрерывность логарифма и свойство пределов для непрерывной функции:
(6)   .
Здесь – некоторая функция, у которой существует предел и этот предел положителен.
Г) Значение второго замечательного предела:
(7)   .

Применяем эти факты к нашему пределу (3). Используем свойство (4):
;
.

Сделаем подстановку   . Тогда   ; .
В силу непрерывности экспоненты,
.
Поэтому при , . В результате получаем:
.

Сделаем подстановку . Тогда . При , . И мы имеем:
.

Применим свойство логарифма (5):
. Тогда
.

Применим свойство (6). Поскольку существует положительный предел и логарифм непрерывен, то:
.
Здесь мы также воспользовались вторым замечательным пределом (7). Тогда
.

Тем самым мы получили формулу (1) производной экспоненты.

Вывод формулы производной показательной функции

Теперь выведем формулу (2) производной показательной функции с основанием степени a. Мы считаем, что и . Тогда показательная функция
(8)  
Определена для всех .

Преобразуем формулу (8). Для этого воспользуемся свойствами показательной функции и логарифма.
;
.
Итак, мы преобразовали формулу (8) к следующему виду:
.

Находим производную. Выносим постоянную за знак производной:
.
Применяем формулу производной сложной функции:
.
Здесь .

Тем самым, мы нашли производную показательной функции с произвольным основанием степени:
.

Другие способы вывода производной экспоненты

Пусть нам известна формула производной натурального логарифма:
(9)   .
Тогда мы можем вывести формулу производной экспоненты, учитывая, что экспонента является обратной функцией к натуральному логарифму.

Перепишем формулу (9) в следующем виде:
,
где .
Переменные можно обозначать любыми буквами. Поменяем местами x и y:
(10)   ,
где .

Теперь рассмотрим экспоненту (e в степени x):
(11)   .
Применим формулу производной обратной функции:
(12)   .
Обратной функцией к экспоненте является натуральный логарифм. Подставим значение производной натурального логарифма (10):
.
И, наконец, выразим y через x по формуле (11):
.
Формула доказана.


Теперь докажем формулу производной экспоненты, применяя формулу производной сложной функции. Поскольку функции и являются обратными друг к другу, то
.
Дифференцируем это уравнение по переменной x:
(13)   .
Производная от икса равна единице:
.
Применим формулу производной сложной функции:
.
Здесь . Подставим в (13):
.
Отсюда
.

Пример

Найти производные от e в степени 2x, e в степени 3x и e в степени nx. То есть найти производные функций
y = e 2x,   y = e 3x   и   y = e nx.

Решение

Исходные функции имеют похожий вид. Поэтому мы найдем производную от функции   y = e nx. Затем подставим n = 2 и n = 3. И из общей формулы найдем выражения для производных от e 2x, e 3x и e nx.

Итак, имеем исходную функцию
.
Представим эту функцию как сложную функцию, состоящую из двух функций:
1)   Функции , зависящей от переменной : ;
2)   Функции , зависящей от переменной : .
Тогда исходная функция составлена из функций и :
.

Найдем производную от функции по переменной x:
.
Найдем производную от функции по переменной :
.
Применяем формулу производной сложной функции.
.
Здесь мы подставили .

Итак, мы нашли:
.
Подставляем n = 2 и n = 3.

Ответ

;   ;   .

См. также
Все примеры вычисления производных с решениями > > >

Производные высших порядков от e в степени x

Теперь найдем производные высших порядков. Сначала рассмотрим экспоненту:
(14)   .
Мы нашли ее производную первого порядка:
(1)   .

Мы видим, что производная от функции (14) равна самой функции (14). Дифференцируя (1), получаем производные второго и третьего порядка:
;
.

Отсюда видно, что производная n-го порядка также равна исходной функции:
.

Производные высших порядков показательной функции

Теперь рассмотрим показательную функцию с основанием степени a:
.
Мы нашли ее производную первого порядка:
(15)   .

Дифференцируя (15), получаем производные второго и третьего порядка:
;
.

Мы видим, что каждое дифференцирование приводит к умножению исходной функции на . Поэтому производная n-го порядка имеет следующий вид:
.

Опубликовано: