Олег ОдинцовОбыкновенные дифференциальные уравнения
Справочник по элементарным функциям
Методы вычисления неопределенных интегралов

Статика – раздел теоретической механики

Статика - теоретическая механика
Изложены основные понятия статики – раздела теоретической механики. Рассмотрены законы равновесия точки и тела. Представлены свойства моментов сил относительно точки и оси. Рассмотрена сила тяжести и сила распределенной нагрузки.
Статика – это раздел теоретической механики, в котором изучаются условия равновесия материальных тел, находящихся под действием сил.

Под состоянием равновесия, в статике, понимается состояние, при котором все части механической системы покоятся (относительно неподвижной системы координат). Хотя методы статики применимы и к движущимся телам, и с их помощью можно изучать задачи динамики, но базовыми объектами изучения статики являются неподвижные механические тела и системы.

Сила – это мера воздействия одного тела на другое. Сила – это вектор, имеющий точку приложения на поверхности тела. Под действием силы, свободное тело получает ускорение, пропорциональное вектору силы и обратно пропорциональное массе тела.

Закон равенства действия и противодействия

Сила, с которой первое тело действует на второе, равна по абсолютной величине и противоположна по направлению силе, с которой второе тело действует на первое.

Принцип отвердевания

Если деформируемое тело находится в равновесии, то его равновесие не нарушится, если тело считать абсолютно твердым.

Статика материальной точки

Рассмотрим материальную точку, которая находится в равновесии. И пусть на нее действуют n сил  ,  k = 1, 2, ..., n.

Если материальная точка находится в равновесии, то векторная сумма действующих на нее сил равна нулю:
(1)   .

Геометрическая сумма сил

В равновесии геометрическая сумма сил, действующих на точку, равна нулю.

Геометрическая интерпретация. Если в конец первого вектора поместить начало второго вектора , а в конец второго вектора поместить начало третьего , и далее продолжать этот процесс, то конец последнего, n-го вектора окажется совмещенным с началом первого вектора. То есть мы получим замкнутую геометрическую фигуру, длины сторон которой равны модулям векторов . Если все векторы лежат в одной плоскости, то мы получим замкнутый многоугольник.

Часто бывает удобным выбрать прямоугольную систему координат Oxyz. Тогда суммы проекций всех векторов сил на оси координат равны нулю:

Если выбрать любое направление, задаваемое некоторым вектором , то сумма проекций векторов сил на это направление равна нулю:
.
Умножим уравнение (1) скалярно на вектор :
.
Здесь – скалярное произведение векторов  и  .
Заметим, что проекция вектора на направление вектора определяется по формуле:
.

Статика твердого тела

Момент силы относительно точки

Определение момента силы

Моментом силы , приложенной к телу в точке A, относительно неподвижного центра O, называется вектор , равный векторному произведению векторов и :
(2)   .

Геометрическая интерпретация

Момент силы

Момент силы равен произведению силы F на плечо OH.

Пусть векторы  и  расположены в плоскости рисунка. Согласно свойству векторного произведения, вектор перпендикулярен векторам  и  , то есть перпендикулярен плоскости рисунка. Его направление определяется правилом правого винта. На рисунке вектор момента направлен на нас. Абсолютное значение момента:
.
Поскольку  , то
(3)   .

Используя геометрию, можно дать другую интерпретацию момента силы. Для этого проведем прямую AH через вектор силы  . Из цента O опустим перпендикуляр OH на эту прямую. Длину этого перпендикуляра называют плечом силы. Тогда
(4)   .
Поскольку , то формулы (3) и (4) эквивалентны.

Таким образом, абсолютное значение момента силы относительно центра O равно произведению силы на плечо этой силы относительно выбранного центра O.

При вычислении момента часто бывает удобным разложить силу на две составляющие:
,
где . Сила проходит через точку O. Поэтому ее момент равен нулю. Тогда
.
Абсолютное значение момента:
.

Компоненты момента в прямоугольной системе координат

Если выбрать прямоугольную систему координат Oxyz с центром в точке O, то момент силы будет иметь следующие компоненты:
(5.1)   ;
(5.2)   ;
(5.3)   .
Здесь – координаты точки A в выбранной системе координат:
.
Компоненты представляют собой значения момента силы относительно осей , соответственно.

Свойства момента силы относительно центра

Момент относительно центра O, от силы, проходящей через этот центр, равен нулю.

Если точку приложения силы переместить вдоль линии, проходящей через вектор силы, то момент, при таком перемещении, не изменится.

Момент от векторной суммы сил, приложенных к одной точке тела, равен векторной сумме моментов от каждой из сил, приложенных к этой же точке:
.

Тоже самое относится и к силам, чьи линии продолжения пересекаются в одной точке. В этом случае, за точку приложения сил следует брать их точку пересечения.

Если векторная сумма сил равна нулю:
,
то сумма моментов от этих сил не зависит от положения центра, относительно которого вычисляются моменты:
.

Пара сил

Пара сил – это две силы, равные по абсолютной величине и имеющие противоположные направления, приложенные к разным точкам тела.

Пара сил характеризуется моментом , который они создают. Поскольку векторная сумма сил, входящих в пару равна нулю, то создаваемый парой момент не зависит от точки, относительно которой вычисляется момент. С точки зрения статического равновесия, природа сил, входящих в пару, не имеет значения. Пару сил используют для того, чтобы указать, что на тело действует момент сил, имеющий определенное значение .

Момент силы относительно заданной оси

Часто встречаются случаи, когда нам не нужно знать все компоненты момента силы относительно выбранной точки, а нужно знать только момент силы относительно выбранной оси.

Моментом силы относительно оси, проходящей через точку O – это проекция вектора момента силы, относительно точки O, на направление оси.

Свойства момента силы относительно оси

Момент относительно оси от силы, проходящей через эту ось равен нулю.

Момент относительно оси от силы, параллельной этой оси равен нулю.

Вычисление момента силы относительно оси

Момент силы относительно оси

Момент силы относительно оси.

Пусть на тело, в точке A действует сила . Найдем момент этой силы относительно оси O′O′′.

Построим прямоугольную систему координат. Пусть ось Oz совпадает с O′O′′. Из точки A опустим перпендикуляр OH на O′O′′. Через точки O и A проводим ось Ox. Перпендикулярно Ox и Oz проводим ось Oy. Разложим силу на составляющие вдоль осей системы координат:
.
Сила пересекает ось O′O′′. Поэтому ее момент равен нулю. Сила параллельна оси O′O′′. Поэтому ее момент также равен нулю. По формуле (5.3) находим:
.

Заметим, что компонента направлена по касательной к окружности, центром которой является точка O. Направление вектора определяется правилом правого винта.

Условия равновесия твердого тела

В равновесии векторная сумма всех действующих на тело сил равна нулю и векторная сумма моментов этих сил относительно произвольного неподвижного центра равна нулю:
(6.1)   ;
(6.2)   .

Подчеркнем, что центр O, относительно которого вычисляются моменты сил можно выбирать произвольным образом. Точка O может, как принадлежать телу, так и находится за его пределами. Обычно центр O выбирают так, чтобы сделать вычисления более простыми.

Условия равновесия можно сформулировать и другим способом.

В равновесии сумма проекций сил на любое направление, задаваемое произвольным вектором , равна нулю:
.
Также равна нулю сумма моментов сил относительно произвольной оси O′O′′:
.

Иногда такие условия оказываются более удобными. Бывают случаи, когда за счет выбора осей, можно сделать вычисления более простыми.

Центр тяжести тела

Рассмотрим одну из важнейших сил – силу тяжести. Здесь силы не приложены в определенных точках тела, а непрерывно распределены по его объему. На каждый участок тела с бесконечно малым объемом ΔV, действует сила тяготения . Здесь ρ – плотность вещества тела, – ускорение свободного падения.

Пусть – масса бесконечно малого участка тела. И пусть точка Ak определяет положение этого участка. Найдем величины, относящиеся к силе тяжести, которые входят в уравнения равновесия (6).

Найдем сумму сил тяжести, образованную всеми участками тела:
,
где – масса тела. Таким образом, сумму сил тяжести отдельных бесконечно малых участков тела можно заменить одним вектором силы тяжести всего тела:
.

Найдем сумму моментов сил тяжести, относительно произвольным способом выбранного центра O:

.
Здесь мы ввели точку C, которая называется центром тяжести тела. Положение центра тяжести, в системе координат с центром в точке O, определяется по формуле:
(7)   .

Итак, при определении статического равновесия, сумму сил тяжести отдельных участков тела можно заменить равнодействующей
,
приложенной к центру масс тела C, положение которого определяется формулой (7).

Положение центра тяжести для различных геометрических фигур можно найти в соответствующих справочниках. Если тело имеет ось или плоскость симметрии, то центр тяжести расположен на этой оси или плоскости. Так, центры тяжести сферы, окружности или круга находятся в центрах окружностей этих фигур. Центры тяжести прямоугольного параллелепипеда, прямоугольника или квадрата также расположены в их центрах – в точках пересечения диагоналей.

Распределенная нагрузка

Распределенная нагрузка

Равномерно (А) и линейно (Б) распределенная нагрузка.

Также встречаются подобные силе тяжести случаи, когда силы не приложены в определенных точках тела, а непрерывно распределены по его поверхности или объему. Такие силы называют распределенными силами или распределенными нагрузками.

Равномерно распределенная нагрузка q (рисунок А). Также, как и в случае с силой тяжести, ее можно заменить равнодействующей силой величины , приложенной в центре тяжести эпюры. Поскольку на рисунке А эпюра представляет собой прямоугольник, то центр тяжести эпюры находится в ее центре – точке C: |AC| = |CB|.

Линейно распределенная нагрузка q (рисунок В). Ее также можно заменить равнодействующей. Величина равнодействующей равна площади эпюры:
.
Точка приложения находится в центре тяжести эпюры. Центр тяжести треугольника, высотой h, находится на расстоянии от основания. Поэтому .

Силы трения

Трение скольжения. Пусть тело находится на плоской поверхности. И пусть – сила, перпендикулярная поверхности, с которой поверхность действует на тело (сила давления). Тогда сила трения скольжения параллельна поверхности и направлена в сторону, препятствуя движению тела. Ее наибольшая величина равна:
,
где f – коэффициент трения. Коэффициент трения является безразмерной величиной.

Трение качения. Пусть тело округлой формы катится или может катиться по поверхности. И пусть – сила давления, перпендикулярная поверхности, с которой поверхность действует на тело. Тогда на тело, в точке соприкосновения с поверхностью, действует момент сил трения, препятствующий движению тела. Наибольшая величина момента трения равна:
,
где δ – коэффициент трения качения. Он имеет размерность длины.

Использованная литература:
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.

Опубликовано: