Методы решения физико-математических задач

Производная дроби из двух функций

Производная дроби из двух функций
Формула производной дроби из двух функций. Доказательство двумя способами. Подробно разобранные примеры дифференцирования частного.

Пусть функции     и     определены в некоторой окрестности точки и имеют в точке производные. И пусть  . Тогда их частное    имеет в точке производную, которая определяется по формуле:
(1)   .

Доказательство

Введем обозначения:
;
.
Здесь и являются функциями от переменных и . Но для простоты записи мы будем опускать обозначения их аргументов.

Далее замечаем, что
;
.
По условию функции   и   имеют производные в точке , которые являются следующими пределами:
;
.
Из существования производных следует, что функции   и   непрерывны в точке . Поэтому
;
.

Рассмотрим функцию y от переменной x, которая является дробью из функций и :
.
Рассмотрим приращение этой функции в точке :
.
Умножим на  :

.
Отсюда
.

Теперь находим производную:

.

Итак,
.
Формула доказана.

Вместо переменной можно использовать любую другую переменную. Обозначим ее как x. Тогда если существуют производные и , причем  , то производная дроби, составленной двух функций, определяется по формуле:
.
Или в более короткой записи
(1)   .

Доказательство вторым способом

Рассмотрим уравнение
.
Здесь , и есть функции от переменной x.
Умножим на  :
.
Дифференцируем по переменной x, применяя формулу производной произведения двух функций:
.
Отсюда находим искомую производную:
;
.

Примеры

Здесь мы рассмотрим простые примеры вычисления производной дроби, применяя формулу производной частного (1). Заметим, что в более сложных случаях, находить производную дроби проще с помощью логарифмической производной.

Пример 1

Найдите производную дроби
,
где , , , – постоянные.

Решение

Применим правило дифференцирования суммы функций:
.
Производная постоянной
.
Из таблицы производных находим:
.
Тогда
;
.

Заменим на и на :
.

Теперь находим производную дроби по формуле
.

.

Ответ

.

Пример 2

Найти производную функции от переменной x
.

Решение

Применяем правила дифференцирования, как в предыдущем примере.
;
.

Применяем правило дифференцирования дроби
.


.

Раскрываем скобки.

.

Ответ

.

Пример 3

Найти производную дроби
.

Решение

Из таблицы производных находим:
.
Применяем правила дифференцирования суммы и постоянной.
;
.

Применяем формулу для производной дроби:
;

.

Ответ

.

.     Опубликовано:   Изменено: