Олег ОдинцовОбыкновенные дифференциальные уравнения
Справочник по элементарным функциям
Методы вычисления неопределенных интегралов

Координатный способ задания движения точки

Формулы для вычисления скорости точки, ускорения, радиуса кривизны траектории, касательной, нормали и бинормали по заданным зависимостям координат от времени. Пример решения задачи, в которой по заданным уравнениям движения нужно определить скорость и ускорение точки. Также определяется радиус кривизны траектории, касательная, нормаль и бинормаль.

Выводы приведенных ниже формул и изложение теории приводится на странице “Кинематика материальной точки”. Здесь мы применим основные результаты этой теории к координатному способу задания движения материальной точки.

Пусть мы имеем неподвижную прямоугольную систему координат с центром в неподвижной точке . При этом положение точки M однозначно определяются ее координатами (x, y, z). Координатный способ задания движения точки – это такой способ, при котором заданы зависимости координат от времени. То есть заданы три функции от времени (при трехмерном движении):

Далее мы приводим формулы вычисления кинематических величин и пример решения задачи для координатного способа задания движения.

Определение кинематических величин

Зная зависимости координат от времени , мы автоматически определяем радиус-вектор материальной точки M по формуле:
,
где – единичные векторы (орты) в направлении осей x, y, z.

Дифференцируя по времени , находим проекции скорости и ускорения на оси координат:
;
;
Модули скорости и ускорения:
;
.

Единичный вектор в направлении касательной к траектории:
.

Тангенциальное (касательное) ускорение – это проекция полного ускорения на направление скорости:
.
Вектор тангенциального (касательного) ускорения:

Нормальное ускорение:
.
Вектор нормального ускорения:
;   .
Единичный вектор в направлении главной нормали траектории:
.

Радиус кривизны траектории:
.
Центр кривизны траектории:
.

Единичный вектор в направлении бинормали:
.

Пример решения задачи

Определение скорости и ускорения точки по заданным уравнениям ее движения

По заданным уравнениям движения точки установить вид ее траектории и для момента времени найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.

Уравнения движения точки:
,   см;
,   см.

Решение

Определение вида траектории

Исключаем время из уравнений движения. Для этого перепишем их в виде:
;     .
Применим формулу:
.
;
;
;
.

Итак, мы получили уравнение траектории:
.
Это уравнение параболы с вершиной в точке и осью симметрии .

Поскольку
, то
; или
.
Аналогичным образом получаем ограничение для координаты :
;
;

Таким образом, траекторией движения точки является дуга параболы
,
расположенная при
  и   .

Строим параболу по точкам.

0 6
± 3 5,625
± 6 4,5
± 9 2,625
± 12 0

Определяем положение точки в момент времени .
;
.

Определение скорости и ускорения точки M

Определение скорости и ускорения точки M

Определение скорости точки

Дифференцируя координаты и по времени , находим компоненты скорости.
.
Чтобы продифференцировать , удобно применить формулу тригонометрии:
. Тогда
;
.

Вычисляем значения компонент скорости в момент времени :
;
.
Модуль скорости:
.

Определение ускорения точки

Дифференцируя компоненты скорости и по времени , находим компоненты ускорения точки.
;
.

Вычисляем значения компонент ускорения в момент времени :
;
.
Модуль ускорения:
.

Тангенциальное ускорение – это проекция полного ускорения на направление скорости :
.
Поскольку , то вектор тангенциального ускорения направлен противоположно скорости .

Нормальное ускорение:
.
Вектор и направлен в сторону центра кривизны траектории.

Радиус кривизны траектории:
.

Ответ

Траекторией движения точки является дуга параболы
;   .
Скорость точки:   .
Ускорение точки:   ;   ;   .
Радиус кривизны траектории:   .

Определение остальных величин

При решении задачи мы нашли:
вектор и модуль скорости:
;   ;
вектор и модуль полного ускорения:
;   ;
тангенциальное и нормальное ускорения:
;   ;
радиус кривизны траектории:   .

Определим остальные величины.

Единичный вектор в направлении касательной к траектории:
.
Вектор тангенциального ускорения:

.
Вектор нормального ускорения:

.
Единичный вектор в направлении главной нормали:
.
Координаты центра кривизны траектории:

.

Введем третью ось системы координат перпендикулярно осям и . В трехмерной системе
;   .
Единичный вектор в направлении бинормали:


.

Опубликовано:


Яндекс.Метрика
Rambler's Top100
Олег Одинцов © 1cov-edu.ru