Олег ОдинцовОбыкновенные дифференциальные уравнения
Справочник по элементарным функциям
Методы вычисления неопределенных
Русский  |  English
интегралов

Дифференциальные уравнения первого порядка, приводящиеся к однородным

Рассмотрен метод решения дифференциальных уравнений, приводящихся к однородным дифференциальным уравнениям первого порядка. Дан пример подробного решения дифференциального уравнения, приводящегося к однородному уравнению.

К однородным уравнениям первого порядка приводится уравнение вида:
(1)   ,
где f – функция.

Как определить, что дифференциальное уравнение приводится к однородному

Для того, чтобы определить, что дифференциальное уравнение приводится к однородному, нужно выделить две линейные формы:
a1x + b1y + c1,   a2x + b2y + c2,
и выполнить замену:
a1x + b1y + c1 → t (a1x + b1y + c1);
a2x + b2y + c2 → t (a2x + b2y + c2).
Если, после преобразований, t сократится, то это уравнение приводится к однородному.

Пример

Определить, приводится ли данное дифференциальное уравнение к однородному:
.

Решение

Выделяем две линейные формы:
x + 2y + 1 и x + 4y + 3.
Первую заменим на t (x + 2y + 1), вторую – на t (x + 4y + 3):
.
По свойству логарифма:

.
t сокращается:
.
Следовательно, это уравнение приводится к однородному.

Решение дифференциального уравнения, приводящегося к однородному уравнению

Решаем систему уравнений:
(2)  

Здесь возможны три случая.

1)   Система (2) имеет бесконечное множество решений (прямые a1x + b1y + c1 = 0 и a2x + b2y + c2 = 0 совпадают). В этом случае
;
.
Тогда
.
Это простейший вид уравнения с разделяющимися переменными:
.
Его решение:
y = Ax + C .

2)   Система (2) не имеет решений (прямые a1x + b1y + c1 = 0 и a2x + b2y + c2 = 0 параллельны). В этом случае a1b2 = a2b1.
Применим это соотношение.

.

Это означает, что a2x + b2y + c2 является функцией от a1x + b1y + c1. Поэтому     является функцией от a1x + b1y + c1. То есть f является функцией от a1x + b1y + c1. Обозначим такую функциею как g. Тогда исходное уравнение (1) имеет вид:
.
Это уравнение приводится к уравнению с разделяющимися переменными подстановкой
z = a1x + b1y + c1.

3)   Система (2) имеет одно решение (прямые a1x + b1y + c1 = 0 и a2x + b2y + c2 = 0 пересекаются в одной точке). Обозначим это решение как x0, y0. Тогда
(3)  
Делаем подстановку x = t + x0, y = u + y0, где u – это функция от t. Тогда
dx = dt,   dy = du;

.
Или
.
Это однородное дифференциальное уравнение первого порядка. Оно решается подстановкой u = z t, где z – это функция от t.

Пример решения дифференциального уравнения, приводящегося к однородному уравнению первого порядка

Решить уравнение

(П.1)   .

Решение

1)   Проверим, приводится ли это дифференциальное уравнение к однородному. Для этого выделяем две линейные формы:
2x – y + 4 и x – 2y + 5.
Первую заменим на t (2x – y + 4), вторую – на t (x – 2y + 5):
.
Делим на t:
.
t сократилось, поэтому это уравнение приводится к однородному.

2)   Решаем систему

Из первого уравнения y = 2x + 4. Подставляем во второе:
x – 2(2x + 4) + 5 = 0;
x – 4x – 8 + 5 = 0;
– 3x = 3;
x = –1;
y = 2x + 4 = 2·(–1) + 4 = 2.
Итак, мы нашли решение системы:
x0 = –1,   y0 = 2.

3)   Делаем подстановку:
x = t + x0 = t – 1;
y = u + y0 = u + 2,
где u – функция от t. dx = dt,   dy = du,   ;
;
.
Подставляем в (П.1):
(П.2)   .
Это – однородное уравнение.

4)   Решаем однородное уравнение (П.2). Делаем подстановку:
u = z · t, где z – функция от t.
u′ = (z · t)′ = z′t + z t′ = z′t + z.
Подставляем в (П.2):
.
Сокращаем на t и выполняем преобразования:
;
;
.
Разделяем переменные – умножаем на dt и делим на t (z2 – 1). При z2 ≠ 1 получаем:
.
Интегрируем:
(П.3)   .
Вычисляем интегралы:
;

.
Подставляем в (П.3):
.
Умножим на 2 и потенцируем:
;
.
Заменим постоянную e2C → C. Раскроем знак модуля, поскольку нужный знак обеспечивается выбором знака постоянной C. Умножим на (z + 1)2 и применим формулу: z2 – 1 = (z – 1)(z + 1).
.
Сократим на (z – 1):
.
Возвращаемся к переменным u и t, используя формулу: u = z t. Для этого умножим на t:
;
;
.
Возвращаемся к переменным x и y, используя формулы: t = x + 1, u = y – 2.
;
(П.4)   .

Теперь рассмотрим случай z2 = 1 или z = ±1.
;
.
Для верхнего знака «+» имеем:
;
.
Это решение входит в общий интеграл (П.4) при значении постоянной C = 0.
Для нижнего знака «–»:
;
.
Эта зависимость также является решением исходного дифференциального уравнения, но не входит в общий интеграл (П.4). Поэтому к общему интегралу добавим решение
.

Ответ

;
.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Опубликовано:   Изменено:


Яндекс.Метрика
Rambler's Top100
Олег Одинцов © 1cov-edu.ru