Олег ОдинцовОбыкновенные дифференциальные уравнения
Справочник по элементарным функциям
Методы вычисления неопределенных интегралов

Решение линейных дифференциальных уравнений первого порядка

Определение линейного дифференциального уравнения первого порядка. Рассмотрен метод решения линейных дифференциальных уравнений первого порядка с помощью интегрирующего множителя. Дан пример подробного решения такого уравнения.
Линейное дифференциальное уравнение первого порядка – это уравнение вида

,
где p и q – функции переменной x.
Линейное однородное дифференциальное уравнение первого порядка – это уравнение вида

Линейное неоднородное дифференциальное уравнение первого порядка – это уравнение вида

Член q(x) называется неоднородной частью уравнения.

Рассмотрим линейное неоднородное дифференциальное уравнение первого порядка:
(1)   .
Существует три способа решения этого уравнения:

Решение линейного дифференциального уравнения с помощью интегрирующего множителя

Рассмотрим метод решения линейного дифференциального уравнения первого порядка с помощью интегрирующего множителя.
Умножим обе части исходного уравнения (1) на интегрирующий множитель
:
(2)  
Далее замечаем, что производная от интеграла равна подынтегральной функции:

По правилу дифференцирования сложной функции:

По правилу дифференцирования произведения:


Подставляем в (2):

Интегрируем:

Умножаем на    . Получаем общее решение линейного дифференциального уравнения первого порядка:

Пример решения линейного дифференциального уравнения первого порядка

Решить уравнение

Решение

Разделим обе части исходного уравнения на x:
(i)   .
Тогда
;
.
Интегрирующий множитель:

Знак модуля можно опустить, поскольку интегрирующий множитель можно умножать на любую постоянную (в том числе на ± 1).
Умножим (i) на x 3:
.
Выделяем производную.
;
.
Интегрируем, применяя таблицу интегралов:
.
Делим на x 3:
.

Ответ

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Опубликовано:   Изменено: