Методы решения физико-математических задач

Метод Бернулли (введение двух функций). Линейные дифференциальные уравнения первого порядка

Решение дифференциальных уравнений первого порядка методом Бернулли
Изложен способ решения линейных дифференциальных уравнений первого порядка методом Бернулли – введением двух функций. Рассмотрен пример подробного решения линейного дифференциального уравнения методом Бернулли.

Рассмотрим линейное неоднородное дифференциальное уравнение первого порядка:

Существует три способа решения этого уравнения:

Рассмотрим решение линейного дифференциального уравнения первого порядка методом Бернулли.

Метод введения двух функций (Бернулли)

Ищем решение исходного уравнения в виде произведения двух функций:
y = u · v
где u, v - функции от x. Дифференцируем:
y′ = u′ · v + u · v′
Подставляем в исходное уравнение:

Выносим u за скобки:
(1)  
В качестве v возьмем любое, отличное от нуля, решение уравнения:
(2)  
Это уравнение с разделяющимися переменными.

Разделяем переменные. Умножаем обе части уравнения на dx и делим на v

Интегрируем:

Постоянную C возьмем равной нулю, поскольку нам нужно любое, отличное от нуля, решение.

Потенцируем и опускаем знак модуля (Знак модуля сводится к умножению на постоянную ±1).

Подставим в (1) учитывая, что согласно (2), выражение в скобках равно нулю:

Отсюда

Интегрируем

Окончательно находим:

.

Пример решения линейного дифференциального уравнения первого порядка методом Бернулли

Решить уравнение

Решение

Делаем подстановку:
y = u · v
где u, v - функции от x. Дифференцируем:
y′ = u′ · v + u · v′
Подставляем в исходное уравнение:

Выносим u за скобки:
(3)  
В качестве v возьмем любое, отличное от нуля, решение уравнения:
(4)   .
Это уравнение с разделяющимися переменными,
.
Разделяем переменные. Умножаем обе части уравнения на dx и делим на xv:

Интегрируем:

Постоянную C возьмем равной нулю, поскольку нам нужно любое, отличное от нуля, решение. По таблице интегралов, находим:

Или

Потенцируем и опускаем знаки модуля (Знак модуля сводится к умножению на постоянную ±1).

Подставим в (3) учитывая, что согласно (4), выражение в скобках равно нулю:

Отсюда

Интегрируем, применяя формулу :
.
Окончательно находим:
.

Ответ

Общее решение уравнения:

.     Опубликовано:   Изменено: