Методы решения физико-математических задач

Определение и свойства момента силы

Определение момента силы относительно точки
Определения момента силы относительно точки и оси. Определение плеча силы относительно точки. Формулировки и доказательства свойств момента силы. Выражение абсолютного значения момента в виде произведения плеча силы на модуль силы.

Момент силы относительно точки

Определение момента

Момент силы относительно точки O
– это векторное произведение вектора , проведенного из точки O в точку приложения силы A, на вектор силы :
(1)   .

Если выбрать прямоугольную систему координат Oxyz с центром в точке O, то момент силы будет иметь следующие компоненты:
(1.1)   ;
(1.2)   ;
(1.3)   .
Здесь – координаты точки A в выбранной системе координат:
.
Компоненты представляют собой значения момента силы относительно осей , соответственно.

Определение плеча силы

Плечо силы относительно точки
– это расстояние между линией действия силы и точкой, относительно которой определяется плечо. То есть плечо силы – это длина перпендикуляра, опущенного из точки на линию действия силы.

Свойства

Если точку приложения силы переместить вдоль линии ее действия, то момент, при таком перемещении, не изменится.
Доказательство ⇓

Абсолютная величина момента силы относительно некоторой точки равна произведению абсолютного значения силы на плечо этой силы относительно выбранной точки.
Доказательство ⇓

Момент относительно точки O, от силы, линия действия которой проходит через эту точку, равен нулю.
Доказательство ⇓

Момент от векторной суммы сил, приложенных к одной точке тела, равен векторной сумме моментов от каждой из сил, приложенных к этой же точке:
.
Доказательство ⇓

Тоже самое относится и к силам, чьи линии продолжения пересекаются в одной точке. При этом в качестве точки приложения суммы сил берется точка пересечения линий их действия.

Если векторная сумма сил равна нулю:
,
то сумма моментов от этих сил не зависит от положения центра, относительно которого вычисляются моменты:
.
Доказательство ⇓

Момент силы является псевдовектором или, что то же самое, аксиальным вектором.

Это свойство следует из свойства векторного произведения. Поскольку векторы и являются истинными (или полярными) векторами, то их векторное произведение является псевдовектором. Это означает то, что мы можем определить только абсолютное значение и ось, вдоль которой направлено векторное произведение. Само же направление по этой оси мы задаем произвольным образом, используя правило правого винта. То есть мы мысленно откладываем векторы и из одного центра. Затем поворачиваем ручку из положения в положение . В результате правый винт смещается в направлении, перпендикулярном плоскости, в которой расположены векторы. Это направление мы и берем за направление векторного произведения.

Но если бы мы определили направление по правилу левого винта, то векторное произведение было бы направлено в противоположную сторону. При этом никакого противоречия не возникает. То есть фактически, аксиальные векторы могут иметь два взаимно противоположных направления. Чтобы не усложнять математические формулы, мы выбираем одно из них, применяя правило правого винта. По этой причине, псевдовекторы нельзя геометрически складывать с истинными векторами. Но их можно перемножать, используя скалярное или векторное произведение.

Момент силы относительно оси

Определение

Часто встречаются случаи, когда нам не нужно знать все компоненты момента силы относительно выбранной точки, а нужно знать только момент силы относительно выбранной оси.

Момент силы относительно оси
– это проекция вектора момента силы относительно произвольной точки, принадлежащей этой оси, на направление оси.

Пусть – единичный вектор, направленный вдоль оси. И пусть O – произвольная точка, принадлежащая ей. Тогда момент силы относительно оси является скалярным произведением:
.
Такое определение возможно, поскольку для любых двух точек O и O′, принадлежащих оси, проекции моментов относительно этих точек на ось равны. Покажем это.

Воспользуемся векторным уравнением :

;
.
Умножим это уравнение скалярно на единичный вектор , направленный вдоль оси:
.
Поскольку вектор параллелен оси, то . Отсюда
.
То есть проекции моментов на ось, относительно точек O и O′, принадлежащих этой оси, равны.

Свойства

Момент относительно оси от силы, линия действия которой проходит через эту ось, равен нулю.
Доказательство ⇓

Момент относительно оси от силы, параллельной этой оси равен нулю.
Доказательство ⇓

Доказательство свойств

Перемещение точки приложения силы вдоль линии ее действия

Все свойства ⇑ Если точку приложения силы переместить вдоль линии действия силы, то момент, при таком перемещении, не изменится.

Доказательство

Пусть сила приложена в точке A. Через точку A проведем прямую, параллельную вектору силы. Эта прямая является линией ее действия. Переместим точку A приложения силы в точку A′, принадлежащую линии действия. Тогда
.
Вектор проведен через две точки линии действия. Поэтому его направление совпадает или противоположно направлению вектора силы . Тогда , где λ – параметр; .   , если точка A′ смещена относительно A в направлении вектора . В противном случае .

Таким образом, вектор, проведенный из O в A′, имеет вид:
.
Найдем момент силы, приложенной в точке A′, применяя свойства векторного произведения:

.
Мы видим, что момент не изменился:
.

Свойство доказано.

Абсолютная величина момента силы

Все свойства ⇑ Абсолютная величина момента силы относительно некоторой точки равна произведению абсолютного значения силы на плечо этой силы относительно выбранной точки.

Доказательство

Плечо силы

Абсолютное значение момента M относительно точки O равно произведению силы F на ее плечо d = |OD|.

Пусть мы имеем силу , приложенную в точке A. Рассмотрим момент этой силы относительно некоторой точки O. Заметим, что точки O, A и вектор лежат в одной плоскости. Изобразим ее на рисунке. Через точку A, в направлении вектора проводим прямую AB. Эта прямая называется линией действия силы . Через точку O опустим перпендикуляр OD к линии действия. И пусть D является точкой пересечения линии действия и перпендикуляра. Тогда – плечо силы относительно центра O. Обозначим его буквой . Воспользуемся предыдущим свойством ⇑, согласно которому точку приложения силы можно перемещать вдоль ее линии действия. Переместим ее в точку D. Момент силы:
.
Поскольку векторы и перпендикулярны, то по свойству векторного произведения, абсолютное значение момента:
,
где – абсолютное значение силы.

Заметим, что вектор момента перпендикулярен плоскости рисунка. Его направление определяется по правилу правого винта. Если мы будем вращать винт, проходящий через точку O перпендикулярно плоскости рисунка, в направлении силы F, то он будет перемещаться на нас. Поэтому вектор момента перпендикулярен плоскости рисунка и направлен на нас.

Свойство доказано.

Момент относительно точки от силы, проходящей через эту точку

Все свойства ⇑ Момент относительно точки O, от силы, линия действия которой проходит через эту точку, равен нулю.

Доказательство

Пусть линия действия силы проходит через точку O. Тогда плечо этой силы относительно O равно нулю: . Согласно предыдущему свойству ⇑, абсолютное значение момента силы относительно выбранной точки равно нулю:
.

Свойство доказано.

Момент суммы сил, приложенных в одной точке

Все свойства ⇑ Момент от векторной суммы сил, приложенных к одной точке тела, равен векторной сумме моментов от каждой из сил, приложенных к этой же точке:
.

Доказательство

Пусть силы приложены в одной точке A. Пусть – векторная сумма этих сил. Находим момент относительно некоторой точки O от векторной суммы , приложенной в точке A. Для этого применяем свойства векторного произведения:

.

Свойство доказано.

Момент системы сил, векторная сумма которых равна нулю

Все свойства ⇑ Если векторная сумма сил равна нулю:
,
то сумма моментов от этих сил не зависит от положения центра, относительно которого вычисляются моменты:
.

Доказательство

Пусть силы приложены в точках , соответственно. И пусть точки O и C обозначают два центра, относительно которых мы будем вычислять моменты. Тогда имеют место следующие векторные уравнения:
.
Используем их при вычислении суммы моментов относительно точки O:



.
Здесь мы воспользовались тем, что по условию,
.

Свойство доказано.

Момент относительно оси от силы, проходящей через эту ось

Все свойства ⇑ Момент относительно оси от силы, линия действия которой проходит через эту ось, равен нулю.

Доказательство

В определении ⇑ указано, что момент силы относительно оси – это проекция вектора момента силы относительно произвольной точки, принадлежащей этой оси, на направление оси. В качестве такой точки возьмем точку пересечения линии действия силы с осью. Но, согласно доказанному выше ⇑, момент относительно этой точки равен нулю. Поэтому равна нулю и его проекция на эту ось.

Свойство доказано.

Момент относительно оси от силы, параллельной этой оси

Все свойства ⇑ Момент относительно оси от силы, параллельной этой оси равен нулю.

Доказательство

Пусть O – произвольная точка на оси. Рассмотрим момент силы относительно этой точки. Согласно определению:
.
Согласно свойству векторного произведения, вектор момента перпендикулярен вектору силы . Поскольку вектор силы параллелен оси, то вектор момента ей перпендикулярен. Поэтому проекция момента относительно точки O на ось равна нулю.

Свойство доказано.

.     Опубликовано: