Методы решения физико-математических задач

Метод интегрирования неопределенного интеграла по частям

Формула интегрирования по частям
Представлен метод интегрирования неопределенного интеграла по частям. Даны примеры интегралов, вычисляющихся этим методом. Разобраны примеры решений.

Формула интегрирования по частям

Формула интегрирования по частям имеет вид:
.

Метод интегрирования по частям состоит в применении этой формулы. При практическом применении стоит отметить, что u и v являются функциями от переменной интегрирования. Пусть переменная интегрирования обозначена как x (символ после знака дифференциала d в конце записи интеграла) . Тогда u и v являются функциями от x: u(x) и v(x).
Тогда
,     .
И формула интегрирования по частям принимает вид:
.

То есть подынтегральная функция должна состоять из произведения двух функций:
,
одну из которых обозначаем как u:   g(x) = u, а у другой должен вычисляться интеграл (точнее находиться первообразная):
, тогда dv = f(x) dx.

В некоторых случаях f(x) = 1. То есть в интеграле
,
можно положить g(x) = u, x = v.

Резюме

Итак, в данном методе, формулу интегрирования по частям стоит запомнить и применять в двух видах:
;
.

Интегралы, вычисляющиеся интегрированием по частям

Интегралы, содержащие логарифм и обратные тригонометрические (гиперболические) функции

По частям часто интегрируются интегралы, содержащие логарифм и обратные тригонометрические или гиперболические функции. При этом ту часть, которая содержит логарифм или обратные тригонометрические (гиперболические) функции обозначают через u, оставшуюся часть – через dv.

Вот примеры таких интегралов, которые вычисляются методом интегрирования по частям:
,   ,   ,   ,   ,   ,   .
Подробное решение этих интегралов >>>

Интегралы, содержащие произведение многочлена и sin x, cos x или ex

По формуле интегрирования частям находятся интегралы вида:
,   ,   ,
где P(x) – многочлен от x. При интегрировании, многочлен P(x) обозначают через u, а eax dx, cos ax dx или sin ax dx – через dv.

Вот примеры таких интегралов:
,   ,   .
Подробное решение этих интегралов >>>

Примеры вычисления интегралов методом интегрирования по частям

Примеры интегралов, содержащих логарифм и обратные тригонометрические функции

Пример

Вычислить интеграл:

Подробное решение

Здесь подынтегральное выражение содержит логарифм. Делаем подстановки
u = ln x,
dv = x2 dx.
Тогда
,
.

.

Вычисляем оставшийся интеграл:
.
Тогда
.
В конце вычислений нужно обязательно добавить постоянную C, поскольку неопределенный интеграл – это множество всех первообразных. Также ее можно было добавлять и в промежуточных вычислениях, но это лишь загромождало бы выкладки.

Более короткое решение

Можно представить решение и в более коротком варианте. Для этого не нужно делать подстановки с u и v, а можно сгруппировать сомножители и применить формулу интегрирования по частям во втором виде.

.

Ответ

Другие примеры

Примеры решений подобных интегралов >>>

Примеры интегралов, содержащих произведение многочлена и sin x, cos x или ex

Пример

Вычислить интеграл:
.

Решение

Введем экспоненту под знак дифференциала:
e – x dx = – e – x d(–x) = – d(e – x).

Интегрируем по частям.
.
Также применяем метод интегрирования по частям.
.
.
.
Окончательно имеем:
.

Ответ

.

Другие примеры

Примеры решений подобных интегралов >>>

.     Опубликовано:

Меню