Решение пределов функций, используя правило Лопиталя

Метод решения
Одним из самых мощных методов раскрытия неопределенностей и вычисления пределов функций является использование правила Лопиталя. Оно позволяет раскрывать неопределенности вида 0/0 или ∞/∞ в конечной или бесконечно удаленной точке, которую мы обозначим как x0. Правило Лопиталя заключается в том, что мы находим производные числителя и знаменателя дроби. Если существует предел , то существует равный ему предел .
Если после дифференцирования мы опять получаем неопределенность, то процесс можно повторить, то есть применить правило Лопиталя уже к пределу . И так далее, до раскрытия неопределенности.
Для применения этого правила, должна существовать такая проколотая окрестность точки x0, на которой функции в числителе и знаменателе являются дифференцируемыми и функция в знаменателе и ее производная не обращается в нуль.
Применение правила Лопиталя состоит из следующих шагов.
1) Приводим неопределенность к виду 0/0 или ∞/∞. Для этого, если требуется, выполняем преобразования и делаем замену переменной. В результате получаем предел вида .
2) Убеждаемся, что существует такая проколотая окрестность точки x0, на которой функции в числителе и знаменателе являются дифференцируемыми и знаменатель и его производная не обращаются в нуль.
3) Находим производные числителя и знаменателя.
4) Если имеется конечный или бесконечный предел , то задача решена: .
5) Если предела не существует, то это не означает, что не существует исходного предела. Это означает, что данную задачу решить с помощью правила Лопиталя нельзя. Нужно применить другой метод (см. пример ниже).
6) Если в пределе вновь возникает неопределенность, то к нему также можно применить правило Лопиталя, начиная с пункта 2).
Как указывалось выше, применение правила Лопиталя может привести к функции, предела которой не существует. Однако это не означает, что не существует исходного предела. Рассмотрим следующий пример.
.
Применяем правило Лопиталя. , .
Однако предела не существует. Не смотря на это, исходная функция имеет предел:
.
Правило Лопиталя. Формулировки теорем
Здесь мы приводим формулировки теорем, на которых основывается раскрытие неопределенностей по правилу Лопиталя.
Теорема о раскрытии неопределенности 0/0
Пусть функции f и g имеют производные в проколотой (двусторонней или односторонней) окрестности конечной или бесконечно удаленной () точке , причем и не равны нулю в этой окрестности. И пусть
.
Тогда, если существует конечный или бесконечный предел
,
то существует равный ему предел
.
Здесь для двусторонней окрестности. Для односторонней окрестности, , или .
Теорема о раскрытии неопределенности ∞/∞
Пусть функции f и g имеют производные в проколотой (двусторонней или односторонней) окрестности конечной или бесконечно удаленной () точке , причем не равна нулю в этой окрестности. И пусть
.
Тогда, если существует конечный или бесконечный предел
,
то существует равный ему предел
.
Здесь для двусторонней окрестности. Для односторонней окрестности, , или .
Примеры
Все примеры Далее мы приводим подробные решения следующих пределов с помощью правила Лопиталя.
⇓, ⇓, ⇓,
⇓, ⇓, ⇓.
Пример 1
Все примеры ⇑ Показать, что экспонента растет быстрее любой степенной функции, а логарифм – медленнее. То есть показать, что
А) ;
Б) ,
где .
Решение
Рассмотрим предел А). При . Это неопределенность вида . Для ее раскрытия применим правило Лопиталя. Пусть
.
Находим производные. . Тогда
.
Если , то неопределенность исчезает, поскольку при . По правилу Лопиталя,
.
Если , то применяем правило Лопиталя n раз, где – целая часть числа b.
;
.
Поскольку , то . Хотя мы привыкли читать слева направо, но эту серию равенств следует читать справа налево следующим образом. Поскольку существует предел , то существует равный ему предел . Поскольку существует предел , то существует равный ему предел . И так далее, пока не дойдем до предела .
Теперь рассмотрим предел Б):
. Сделаем замену переменной . Тогда ; при ; .
Пример 2
Все примеры ⇑ Найти предел с помощью правила Лопиталя:
.
Решение
Это неопределенность вида 0/0. Находим по правилу Лопиталя.
.
Здесь, после первого применения правила мы снова получили неопределенность. Поэтому применили правило Лопиталя второй раз. Эту серию равенств нужно читать справа налево следующим образом. Поскольку существует предел , то существует равный ему предел . Поскольку существует предел , то существует равный ему исходный предел .
Ответ
Пример 3
Все примеры ⇑ Вычислить предел, используя правило Лопиталя.
.
Решение
Найдем значения числителя и знаменателя при :
;
.
Числитель и знаменатель равны нулю. Мы имеем неопределенность вида 0/0. Для ее раскрытия, применим правило Лопиталя.
.
Ответ
Пример 4
Все примеры ⇑ Решить предел с помощью правила Лопиталя.
.
Решение
Здесь мы имеем неопределенность вида (+0)+0. Преобразуем ее к виду +∞/+∞. Для этого выполняем преобразования.
.
Находим предел в показателе степени, применяя правило Лопиталя.
.
Поскольку экспонента – непрерывная функция для всех значений аргумента, то
.
Ответ
.
Пример 5
Все примеры ⇑ Найти предел используя правило Лопиталя:
.
Решение
Здесь мы имеем неопределенность вида ∞ – ∞. Приводя дроби к общему знаменателю, приведем ее к неопределенности вида 0/0:
.
Применяем правило Лопиталя.
;
;
.
Здесь у нас снова неопределенность вида 0/0. Применяем правило Лопиталя еще раз.
;
;
.
Окончательно имеем:
.
Как и во всех пределах, вычисляемых с помощью правила Лопиталя, читать нужно с конца. Поскольку существует предел , то существует равный ему предел . Поскольку существует предел , то существует равный ему исходный предел .
Примечание. Можно упростить вычисления, если воспользоваться теоремой о замене функций эквивалентными в пределе частного. Согласно этой теореме, если функция является дробью или произведением множителей, то множители можно заменить на эквивалентные функции. Поскольку при , то
.
Ответ
Использованная литература:
Л.Д. Кудрявцев, А.Д. Кутасов, В.И. Чехлов, М.И. Шабунин. Сборник задач по математическому анализу. Том 1. Москва, 2003.
Автор: Олег Одинцов. Опубликовано: