Методы решения физико-математических задач

Решение пределов с дробями из многочленов

Методы решения пределов с дробями из многочленов
Изложены приемы и методы решения пределов дробей с отношениями многочленов. Рассмотрены неопределенности вида ∞ / ∞, 0 / 0 и ∞ ± ∞. Разобраны случаи, когда переменная стремится к бесконечности и к конечному числу. Для каждого варианта приводятся примеры с подробными объяснениями и ссылками на применяемые теоремы и свойства.

Здесь мы рассмотрим примеры и методы решения пределов функций, составленных из отношений многочленов. Это дроби из многочленов и разности дробей. Обзор и обоснование методов решения пределов изложены на странице «Методы вычисления пределов функций и раскрытия неопределенностей».

Методы решения пределов дробей из многочленов

1. Рассмотрим предел функции, которая является отношением многочленов:
, где
(1)   ,
и – многочлены степеней m и n, соответственно:
;
.

1.1. Пусть есть бесконечность:
.
Тогда возникает неопределенность вида . Для ее раскрытия, нужно числитель и знаменатель дроби разделить на xs, где s – наибольшее из чисел m и n.   Примеры ⇓

1.2. Пусть есть конечное число. Найдем значение знаменателя дроби, подставив :
.
1.2.1. Если , то неопределенности нет. Функция определена и непрерывна при . Значение предела равно значению функции в точке :
.   Пример ⇓

1.2.2. Если знаменатель равен нулю, а числитель нет: ,
то неопределенность также отсутствует. Предел равен бесконечности:
.   Пример ⇓

1.2.3. Пусть теперь и числитель, и знаменатель равны нулю:
.
В этом случае у нас возникает неопределенность вида 0/0. Для ее раскрытия, делим числитель и знаменатель на . Деление можно выполнять либо уголком, либо в уме, приравнивая коэффициенты при одинаковых степенях переменной x.   Примеры ⇓

2. Теперь рассмотрим пределы от суммы или разности отношений многочленов. В этом случае, может возникнуть неопределенность вида бесконечность плюс-минус бесконечность: . Для ее раскрытия, нужно привести дроби к общему знаменателю. В результате получим предел от функции вида (1), методы решения которого мы уже рассмотрели.   Пример ⇓

Примеры решений

Пределы при x стремящемся к бесконечности

Пример 1

Найти предел отношения многочленов при x стремящемся к бесконечности:
.

Решение

Разделим числитель и знаменатель дроби на . При имеем:
.
На основании свойств степенной функции,   при  . Применяя арифметические свойства предела функции, находим:
.

Ответ

.

Пример 2

Найти предел функции, которая является отношением многочленов:
.

Решение

Разделим числитель и знаменатель дроби на . При имеем:
.
Применяя арифметические свойства предела функции, находим:
.

Ответ

.

Пример 3

Найти предел:
.

Решение

Разделим числитель и знаменатель дроби на . При имеем:
.
Применим арифметические свойства предела функции к числителю и знаменателю:
;
.
Применим свойства бесконечно малых и бесконечно больших функций:
.

Мы получили правильную величину предела: . Но бесконечно удаленная точка может включать в себя два частных случая: и . Как , так и являются . Если и, для достаточно больших |x|, , то . Если, для достаточно больших |x|, то .

Выясним, имеет ли наш предел определенный знак? Для этого преобразуем знаменатель и переведем бесконечно большую часть в числитель:
;
.
Поскольку , то . Тогда

.

Ответ

.

Пределы в конечной точке

Пример 4. Непрерывные функции

Найти пределы функции

a) при ;   б) при .

Решение

а) Найдем значение знаменателя в точке :
.
Поскольку знаменатель не обращается в нуль, то функция непрерывна в точке . Поэтому предел функции равен ее значению при :
.

б) Найдем значение знаменателя в точке :
.
Здесь также знаменатель не обращается в нуль. Функция непрерывна. Ее предел при равен значению при :
.

Ответ

а) ;   б) .

Пример 5. Бесконечно большие функции

Задана функция в виде отношения многочленов:
.
Найти односторонние пределы:
а) ;   б) .

Решение

Найдем значение знаменателя дроби в точке :
.
Знаменатель равен нулю. Поэтому функция не является непрерывной при . Выясним, есть ли неопределенность вида 0/0? Для этого найдем значение числителя в этой точке:
.
Числитель не равен нулю. Поэтому неопределенности вида 0/0 нет. Предел при равен бесконечности:
.

Но нам нужно найти односторонние пределы. Для этого выделим из многочлена в знаменателе множитель . То есть представим знаменатель в следующем виде:
.
Раскрываем скобки:

.
Сравнивая левую и правую части, находим:
.
Отсюда ,
;
.

Функция непрерывна в точке , поскольку знаменатель дроби не обращается в нуль. При , имеем:
.
Тогда
;
  при  .
а) Подставим :
.
б) Подставим :
.

Ответ

а) ,   б) .

Примечание.
Если бы знаменатель дроби не равнялся нулю при , то функция была бы непрерывной в точке . В этом случае, пределы слева и справа были бы равны:
.

Неопределенность вида 0/0

Пример 6

Найти предел
.

Решение

Найдем значение знаменателя дроби при :

.
Знаменатель дроби равен нулю. Поэтому функция не определена и, следовательно, не является непрерывной в точке .

Найдем значение числителя при :
.
Числитель дроби также равен нулю. Мы имеем неопределенность вида 0/0. Для ее раскрытия, выделим в многочленах множитель .

Ищем разложение знаменателя в виде:
.
Раскрываем скобки и группируем члены с одинаковыми степенями x:

.
Сравнивая левую и правую части, находим:
.
Отсюда ,
.

На практике, нет необходимости выписывать неопределенные коэффициенты разложения, а затем решать систему уравнений. Подобные вычисления легко проводить в уме. Для числителя имеем:
.

Находим предел:

.

Ответ

.

Пример 7

Найти предел отношения многочленов:
.

Решение

Найдем значение знаменателя при :
.
Знаменатель равен нулю. Поэтому функция не является непрерывной в точке .

Найдем значение числителя дроби при :
.
Числитель дроби также равен нулю. У нас неопределенность вида 0/0. Для ее раскрытия, выделим в многочленах множитель .

Вычисления делаем в уме:
,
.
Делим числитель и знаменатель на . Тогда при имеем:
.

Снова находим значения числителя и знаменателя при : ;
.
Опять неопределенность 0/0. Снова выделяем множитель :
;
.

При имеем:
.
Функция непрерывна в точке , поскольку знаменатель дроби не равен нулю при . Поскольку функции и отличаются только в одной точке ( определена и непрерывна при , а не определена), то их пределы в любой точке равны (см. «Влияние значений функции в конечном числе точек на величину предела»). Находим искомый предел:
.

Ответ

.

Пример 8. Неопределенность вида ∞±

Найти предел разности дробей из многочленов:
.

Решение

При имеем:
;
;
;
.
Поскольку знаменатель каждой из дробей равен нулю, а числители отличны от нуля, то при , каждая из дробей стремится к бесконечности:
  при  .
То есть мы имеем неопределенность вида "бесконечность минус бесконечность".

Для раскрытия неопределенности, приводим дроби к общему знаменателю. Чтобы упростить выкладки, предварительно выделим в знаменателях дробей множитель .
;
;


;
.

Таким образом, задача свелась к вычислению предела от дроби многочленов:
.
Применяем описанные выше методы.

Находим значения числителя и знаменателя при :
;
.
Поскольку числитель и знаменатель равны нулю, то это неопределенность вида 0/0. В знаменателе множитель уже выделен. Выделим этот множитель в числителе:
.
Находим предел:

.

Ответ

.

.     Опубликовано: