Методы решения физико-математических задач

Методы решения пределов функций в картинках

Методы решения пределов
Приводятся методы, применяемые при вычислении пределов функций в сжатом виде – в виде изображений. Каждая картинка содержит основные формулы и понятия страницы, к которой она относится. Картинки сопровождаются заголовками, описаниями страниц и ссылками на них.

Здесь приводится содержание раздела «Методы вычисления пределов» в картинках. На изображениях, в кратком виде представлено содержание страниц раздела. На многих из них излагаются методы, применяемые при вычислении пределов. Рядом с каждым изображением имеется заголовок, описание страницы и ссылка на нее. Просматривая их, можно освежить в памяти применяемые методы и некоторые формулы, а также перейти на страницу с подробным изложением материала.

Методы вычисления пределов функций и раскрытия неопределенностей
Изложены приемы и методы решения задач на вычисление пределов и раскрытие неопределенностей. Рассмотрены следующие вопросы: пределы с непрерывными и сложными функциями; известные пределы; сведение неопределенности одного вида к другому; раскрытие неопределенностей с дробями из многочленов и корней; сравнение функций и решение разложением в степенной ряд; правило Лопиталя.
Примеры пределов с решениями
Страница содержит ссылки на 45 примеров решений пределов функций и 22 задачи на смежные темы. К смежным темам относятся задачи на применение определений предела последовательности и предела функции, а также задачи на непрерывность функции.
Замена переменной при решении пределов
Изложены правила, которые необходимо соблюдать, применяя замену переменной при решении пределов. Формальное применение подстановок, в некоторых случаях, может приводить к неверному результату. Приводится пример, в котором существуют промежуточные пределы, но предела исходной сложной функции не существует.
Решение пределов с дробями из многочленов
Изложены приемы и методы решения пределов дробей с отношениями многочленов. Рассмотрены неопределенности вида ∞ / ∞, 0 / 0 и ∞ ± ∞. Разобраны случаи, когда переменная стремится к бесконечности и к конечному числу. Для каждого варианта приводятся примеры с подробными объяснениями и ссылками на применяемые теоремы и свойства.
Решение пределов с корнями
Изложены методы решения задач на вычисление пределов и раскрытие неопределенностей от функций с корнями. Рассмотрены следующие приемы: применение постановки; применение формул разности квадратов (и других степеней) для линеаризации бесконечно малой части; деление числителя и знаменателя дроби на степенную функцию. Приводятся примеры с подробными решениями.
Доказательство первого замечательного предела и его следствий
Приводится доказательство первого замечательного предела и его следствий. Дается определение длины дуги окружности как верхнюю грань множества длин ломаных, вписанных в дугу.
Примеры решений задач с помощью первого замечательного предела
Собраны формулы, свойства и теоремы, применяемые при решении задач, допускающих решение с помощью первого замечательного предела. Даны подробные решения примеров с использованием первого замечательного предела его следствий.
Доказательство второго замечательного предела и его следствий
Приводится доказательство второго замечательного предела и его следствий.
Примеры решений задач с помощью второго замечательного предела
Даны подробные решения примеров с использованием второго замечательного предела его следствий. Приводятся формулы, свойства и теоремы, применяемые при решении задач, допускающих решение с помощью второго замечательного предела.
О большое и о малое. Сравнение функций
Даны определения о малого, О большого, эквивалентных (асимптотически равных) функций, функций одного порядка, и их свойства. Приводится доказательство свойств и теорем. Эти свойства и теоремы используются для сравнения функций и вычисления пределов при аргументе, стремящемся к конечной или бесконечно удаленной точке.
Решение пределов, используя ряд Тейлора
Изложен метод решения пределов, используя разложение функций в ряд Тейлора. Приводятся применяемые в этом методе свойства о малого и разложения элементарных функций в ряд Маклорена. Подробно разобраны примеры решения пределов, содержащих неопределенности ∞ – ∞, один в степени бесконечность и 0/0.
Решение пределов функций, используя правило Лопиталя
Изложен метод решения пределов, используя правило Лопиталя. Приводятся формулировки соответствующих теорем. Подробно разобраны примеры решения пределов, содержащих неопределенности ∞/∞, 0/0, 0 в степени 0 и ∞ – ∞, с помощью правила Лопиталя.
Применение эквивалентных функций при решении пределов
Изложен метод, позволяющий упростить вычисление пределов, применяя эквивалентные функции. Этот метод применим при вычислении пределов дробей с множителями в числителе или знаменателе. Дана таблица эквивалентных функций при x→0. Приводятся подробно разобранные примеры применения этого метода.

.     Опубликовано: