Определение
- Обобщенное однородное дифференциальное уравнение первого порядка
- – это уравнение вида:
, где α ≠ 0, α ≠ 1, f – функция.
Как определить, является ли дифференциальное уравнение обобщенным однородным
Для того, чтобы определить, является ли дифференциальное уравнение обобщенным однородным, нужно ввести постоянную t и сделать замену:
y → t α· y, x → t·x.
Если удастся выбрать такое значение α, при котором постоянная t сократится, то это – обобщенное однородное дифференциальное уравнение. Изменение производной y′ при такой замене имеет вид:
.
Пример
Определить, является ли данное уравнение обобщенным однородным:
.
Решение
Делаем замену y → t α· y, x → t·x, y′ → t α–1 y′:
;
.
Разделим на t α+5:
;
.
Уравнение не будет содержать t, если
4α – 6 = 0, α = 3/2.
Поскольку при α = 3/2, t сократилось, то это обобщенное однородное уравнение.
Метод решения
Рассмотрим обобщенное однородное дифференциальное уравнение первого порядка:
(1) .
Покажем, что оно приводится к однородному уравнению с помощью подстановки:
t = x α.
Действительно,
.
Отсюда
; .
Подставляем в исходное уравнение (1):
;
.
Это – однородное уравнение. Оно решается подстановкой:
y = z · t,
где z – функция от t.
При решении задач, проще сразу применять подстановку:
y = z x α,
где z – функция от x.
Пример решения обобщенного однородного дифференциального уравнения первого порядка
Решить дифференциальное уравнение
(П.1) .
Решение
Проверим, является ли данное уравнение обобщенным однородным. Для этого в (П.1) делаем замену:
y → t α· y, x → t·x, y′ → t α–1 y′.
.
Разделим на t α:
.
t сократится, если положить α = –1. Значит – это обобщенное однородное уравнение.
Делаем подстановку:
y = z x α = z x –1,
где z – функция от x.
.
Подставляем в исходное уравнение (П.1):
(П.1) ;
;
.
Умножим на x и раскрываем скобки:
;
;
.
Разделяем переменные – умножим на dx и разделим на x z 2. При z ≠ 0 имеем:
.
Интегрируем, пользуясь таблицей интегралов:
;
;
;
.
Потенцируем:
.
Заменим постоянную e C → C и уберем знак модуля, поскольку выбор нужного знака определяется выбором знака постоянной С:
.
Возвращаемся к переменной y. Подставляем z = xy:
.
Делим на x:
(П.2) .
Когда мы делили на z 2, мы предполагали, что z ≠ 0. Теперь рассмотрим решение z = xy = 0, или y = 0.
Поскольку при y = 0, левая часть выражения (П.2) не определена, то к полученному общему интегралу, добавим решение y = 0.
Ответ
;
.
Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.