Типы дифференциальных уравнений

Далее в тексте – функции своих аргументов. Штрих ′ означает производную по аргументу. – постоянные.
Дифференциальные уравнения первого порядка
Особенности дифференциальных уравнений первого порядка
При решении уравнений первого порядка функцию y и переменную x следует считать равноправными. То есть решение может быть в виде так и в виде .
Дифференциальные уравнения первого порядка, разрешенные относительно производной
Уравнения с разделяющимися переменными
;
. Подробнее
Приводящиеся к уравнениям с разделяющимися переменными:
Подробнее
Однородные уравнения
Однородные уравнения не меняют свой вид при замене
,
где t – постоянная. При такой замене производная не меняется:
.
В общем виде их можно выразить через однородную функцию:
, где
.
Уравнения, разрешенные относительно производных можно выразить через произвольную функцию:
.
Такие уравнения можно также записать посредством однородных функций:
,
где и – однородные функции с равными показателями однородности p, то есть обладающие следующим свойством:
. Подробнее
Приводящиеся к однородным
,
где и – однородные функции с равными показателями однородности. Такие уравнения можно выразить через произвольную функцию F:
. Подробнее
Обобщенно однородные уравнения не меняют свой вид при замене
,
где t – постоянная, . Замена для производной:
.
В общем виде их можно записать так:
, где
.
Обобщенно однородные уравнения, разрешенные относительно производной, можно выразить через произвольную функцию:
.
Их можно записать посредством однородных функций:
,
где и – однородные функции с равными показателями однородности.
Подробнее
Линейные дифференциальные уравнения и приводящиеся к ним
- Линейное по y:
- Линейное по f(y):
- Линейное по x:
- Линейное по f(x):
Уравнения Бернулли:
. Подробнее
Уравнения Риккати
Уравнения Якоби
Уравнения в полных дифференциалах
при условии .
Тогда . Подробнее
Интегрирующий множитель
Если дифференциальное уравнение первого порядка не приводится ни к одному из перечисленных типов, то следует попытаться найти интегрирующий множитель, чтобы свести его к уравнению в полных дифференциалах:
;
. Подробнее
Уравнения, не разрешенные относительно производной y′
Уравнения, допускающие решение относительно производной y′
Сначала нужно попытаться разрешить уравнение относительно производной y′. Если это возможно, то уравнение может быть приведено к одному из перечисленных выше типов.
Уравнения, не разрешенные относительно производной y′
Уравнения, допускающие разложение на множители:
.
Подробнее
Уравнения, не содержащие x и y:
. Подробнее
Уравнения, не содержащие x или y:
, или . Подробнее
Уравнения, разрешенные относительно зависимой переменной y
Уравнения Клеро:
. Подробнее
Уравнения Лагранжа:
. Подробнее
Уравнения, приводящиеся к уравнению Бернулли:
;
. Подробнее
Дифференциальные уравнения высших порядков
Дифференциальные уравнения высших порядков, решаемые в квадратурах
Уравнения, содержащие переменную и старшую производную
Общий случай:
. Подробнее
Разрешенные относительно старшей производной:
. Подробнее
Разрешенные относительно переменной:
. Подробнее
Уравнения, содержащие только производные порядков n и n-1
Общий случай:
. Подробнее
Разрешенные относительно младшей производной:
. Подробнее
Разрешенные относительно старшей производной:
. Подробнее
Уравнения, содержащие только производные порядков n и n-2
Общий случай:
. Подробнее
Разрешенные относительно старшей производной:
. Подробнее
Дифференциальные уравнения, допускающие понижение порядка
Уравнения, не содержащие зависимую переменную y (и возможно несколько первых производных):
, или
. Подробнее
Уравнения, не содержащие независимую переменную x:
. Подробнее
Уравнения, однородные относительно функции и ее производных y, y′, y′′, ... :
, причем
.
Их можно выразить через произвольную функцию:
Подробнее
Обобщенно однородные уравнения относительно переменных x, y:
, причем
.
Выраженные через произвольную функцию:
Подробнее
Дифференциальные уравнения с полной производной:
. Подробнее
Линейные дифференциальные уравнения с постоянными коэффициентами и приводящиеся к ним
Линейные однородные уравнения с постоянными коэффициентами:
. Подробнее
Линейные неоднородные уравнения с постоянными коэффициентами:
.
Решение методом Бернулли (двух функций)
Решение методом Лагранжа (вариация постоянных)
Решение линейной подстановкой
Линейные неоднородные уравнения со специальной неоднородной частью:
,
где – многочлены степеней и . Подробнее
Уравнения Эйлера:
. Подробнее
Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.
Автор: Олег Одинцов. Опубликовано: Изменено: