Физический смысл производной
Физический смысл производной заключается в том, что мгновенная скорость изменения любой физической величины равна производной этой величины по времени.
Так, в механике, наиболее распространенными физическими величинами являются координаты точки . При прямолинейном движении, мгновенная скорость движения точки равна производной ее координаты по времени. При движении в пространстве, проекции мгновенной скорости на оси координат равны производным координат по времени: .
Прямолинейное движение
По мере развития механики, стал проясняться следующий факт. Если тела не взаимодействуют друг с другом, то они движутся прямолинейно и равномерно. Но если между ними происходит взаимодействие, то они движутся с переменной скоростью. Поэтому встал вопрос об определении мгновенного значения скорости при неравномерном движении.
Для начала рассмотрим прямолинейное движение. Пренебрежем размерами тела и будем рассматривать его как материальную точку, которую обозначим буквой M. Направим ось OX системы координат вдоль линии движения точки M. Пусть нам известна зависимость координаты x от времени t: . Нашей задачей является определение мгновенной скорости точки M в произвольный момент времени.
Равномерное движение
Если точка движется равномерно, то ее скорость постоянна. Для ее определения, нужно разделить перемещение на отрезок времени , в течении которого произошло это перемещение. Пусть в момент времени , точка M находилась в точке A с координатой , а в момент времени – в точке B с координатой . Тогда перемещение точки M составило . Промежуток времени, в течении которого произошло это перемещение: . Скорость движения:
(1) .
При равномерном движении скорость постоянна: . Поэтому результат вычисления не зависит от того, какие точки A и B мы выбираем. Например, если бы мы вместо точки B взяли другую точку C, то получили бы, то же самое значение скорости:
.
Неравномерное движение
При неравномерном движении скорость не является постоянной. Поэтому, если проделать вычисления по формуле (1), то мы получим только среднее значение скорости на отрезке AB:
(2) .
Однако мы можем предположить, что если приближать точку B к A, то среднее значение не будет хаотично колебаться, а будет стремиться к некоторой величине, которую можно принять за мгновенную скорость движения точки M при .
Если использовать только алгебру, то можно дать только определение средней скорости движения тела на некотором отрезке AB. Чтобы дать четкое математическое определение мгновенной скорости, потребовалось создать новый раздел математики – математический анализ, или анализ бесконечно малых величин. Основой математического анализа является теория пределов. В настоящее время эта теория хорошо разработана, и мы можем использовать уже готовый математический аппарат. Тогда разумно определить мгновенную скорость в точке A как предел, к которому стремится средняя скорость тела M на отрезке AB, при стремлении B к A.
- Мгновенная скорость точки
- Пусть точка M движется вдоль оси координат Ox. И пусть движение описывается законом . Мгновенной скоростью точки M в момент времени называется предел, к которому стремится средняя скорость движения на отрезке при :
.
То есть мгновенная скорость движения точки в момент времени равна производной ее координаты по времени, взятой в момент времени :
.
Заметим, что в механике и физике производная по времени обозначается не штрихом, а точкой над символом переменной. Тогда в физике, предыдущая формула имеет следующий вид:
.
Движение в пространстве
Теперь рассмотрим движение точки M в трехмерном пространстве. В этом случае, ее положение определяется тремя координатами – проекциями точки на оси координат. Тогда мы можем применить результаты, полученные для одномерного движения, к трехмерному. Пусть в момент времени , точка M находилась в точке A с координатами , а в момент времени – в точке B с координатами . Проекция средней скорости точки на ось Ox равна
.
При стремлении B к A, мы получаем проекцию мгновенной скорости на ось Ox:
;
.
Аналогичным образом, рассматривая изменения других координат, мы найдем проекции мгновенной скорости точки M на оси Oy и Oz:
.
Таким образом, при движении в пространстве, проекции мгновенной скорости движения точки M на оси координат в момент времени равны производным ее координат по времени, взятых в момент времени :
(3) .
Если ввести радиус-вектор точки M с координатами , и заменить обозначение момента времени , то формулы (3) можно записать в векторном виде:
.
где – вектор мгновенной скорости точки M в момент времени ; – производная радиус-вектора точки M по времени.
Таким образом, при движении в пространстве, вектор мгновенной скорости движения точки M в момент времени t равен производной по времени ее радиус-вектора в этот момент времени:
(4) ;
(5) .
Ускорение
Еще одной важной физической величиной в механике, является ускорение. Оно определяется как скорость изменения скорости. Совершенно аналогичным способом получаем, что проекции ускорения на оси координат равны производным проекций скорости на эти оси:
(6) .
Подставляя (5) получаем, что проекции ускорения равны вторым производным координат по времени:
.
Эти уравнения можно записать в векторном виде:
;
.
Автор: Олег Одинцов. Опубликовано: