Предел функции – определения, теоремы и свойства
Определение предела функции
Первое определение предела функции по Гейне
- Предел функции (по Гейне)
- при ее аргументе x, стремящемся к x0 – это такое конечное число или бесконечно удаленная точка a, для которой выполняются следующие условия:
1) существует такая проколотая окрестность точки x0, на которой функция f(x) определена;
2) для любой последовательности , сходящейся к :
,
элементы которой принадлежат окрестности , последовательность сходится к a:
.
Предел функции обозначают так:
.
Или при .
Здесь a и x0 могут быть как конечными числами, так и бесконечно удаленными точками: .
Для бесконечно удаленных точек приняты следующие обозначения:
.
Проколотая окрестность конечной точки может быть как двусторонней, так и односторонней. В последнем случае, для левой окрестности пишут:
.
Для правой окрестности:
.
С помощью логических символов существования и всеобщности это определение можно записать следующим образом:
.
Второе определение по Коши
- Предел функции (по Коши)
- при ее аргументе x, стремящемся к x0 – это такое конечное число или бесконечно удаленная точка a, для которой выполняются следующие условия:
1) существует такая проколотая окрестность точки x0, на которой функция f(x) определена;
2) для любой окрестности точки a, принадлежащей , существует такая проколотая окрестность точки x0, на которой значения функции принадлежат выбранной окрестности точки a:
при .
Здесь a и x0 также могут быть как конечными числами, так и бесконечно удаленными точками. С помощью логических символов существования и всеобщности это определение можно записать следующим образом:
.
Если в качестве множества взять левую или правую окрестность конечной точки, то получим определение предела по Коши слева или справа.
Теорема
Определения предела функции по Коши и по Гейне эквивалентны.
Доказательство
Применяемые окрестности точек
В приведенном выше определении применяются произвольные окрестности точек. Например, проколотой окрестностью конечной точки является множество , где – два положительных числа, которые определяют размер окрестности. Более подробно, см. «Окрестность точки».
Тогда, фактически, определение по Коши означает следующее.
Для любых положительных чисел , существуют числа , так что для всех x, принадлежащих проколотой окрестности точки : , значения функции принадлежат окрестности точки a: ,
где , .
С таким определением не совсем удобно работать, поскольку окрестности определяются с помощью четырех чисел . Но его можно упростить, если ввести окрестности с равноудаленными концами. То есть можно положить , . Тогда мы получим определение, которое проще использовать при доказательстве теорем. При этом оно является эквивалентным определению, в котором используются произвольные окрестности. Доказательство этого факта приводится в разделе «Эквивалентность определений предела функции по Коши».
Тогда можно дать единое определение предела функции в конечных и бесконечно удаленных точках:
.
Здесь для конечных точек
; ;
.
Любые окрестности бесконечно удаленных точек являются проколотыми:
; ; .
Далее мы приводим формулировки определений предела функции по Коши для разных случаев, используя определения окрестностей с равноудаленными концами.
Конечные пределы функции в конечных точках
- Число a называется пределом функции f(x) в точке x0,
- если
1) функция определена на некоторой проколотой окрестности конечной точки ;
2) для любого существует такое , зависящее от , что для всех x, для которых , выполняется неравенство
.
С помощью логических символов существования и всеобщности определение предела функции можно записать следующим образом:
.
Односторонние пределы.
Левый предел в точке (левосторонний предел):
.
Правый предел в точке (правосторонний предел):
.
Пределы слева и справа часто обозначают так:
; .
Конечные пределы функции в бесконечно удаленных точках
Аналогичным образом определяются пределы в бесконечно удаленных точках.
.
.
.
Бесконечные пределы функции
.
Также можно ввести определения бесконечных пределов определенных знаков, равных и :
.
.
См. Бесконечный предел функции в конечной точке
Бесконечный предел функции на бесконечности
Свойства и теоремы предела функции
Далее мы считаем, что рассматриваемые функции определены в соответствующей проколотой окрестности точки , которая является конечным числом или одним из символов: . Также может быть точкой одностороннего предела, то есть иметь вид или . Окрестность является двусторонней для двустороннего предела и односторонней для одностороннего.
Основные свойства
Если значения функции f(x) изменить (или сделать неопределенными) в конечном числе точек x1, x2, x3, ... xn, то это изменение никак не повлияет на существование и величину предела функции в произвольной точке x0.
Если существует конечный предел , то существует такая проколотая окрестность точки x0, на которой функция f(x) ограничена:
.
Пусть функция имеет в точке x0 конечный предел, отличный от нуля:
.
Тогда, для любого числа c из интервала , существует такая проколотая окрестность точки x0, что для ,
, если ;
, если .
Если, на некоторой проколотой окрестности точки , – постоянная, то .
Функция имеет предел в точке тогда и только тогда, когда она имеет в этой точке равные односторонние пределы.
Если существуют конечные пределы и и на некоторой проколотой окрестности точки x0
,
то .
Если , и на некоторой окрестности точки
,
то .
В частности, если на некоторой окрестности точки
,
то если , то и ;
если , то и .
Если на некоторой проколотой окрестности точки x0:
,
и существуют конечные (или бесконечные определенного знака) равные пределы:
, то
.
См. Теорема о пределе промежуточной функции
Арифметические свойства предела функции
Пусть функции и определены в некоторой проколотой окрестности точки . И пусть существуют конечные пределы:
и .
И пусть C – постоянная, то есть заданное число. Тогда
;
;
;
, если .
Если , то .
Критерий Коши существования предела функции
Теорема
Для того, чтобы функция , определенная на некоторой проколотой окрестности конечной или бесконечно удаленной точки x0, имела в этой точке конечный предел, необходимо и достаточно, чтобы для любого ε > 0 существовала такая проколотая окрестность точки x0, что для любых точек и из этой окрестности, выполнялось неравенство:
.
Предел сложной функции
Теорема о пределе сложной функции
Пусть функции и имеют пределы:
;
.
И пусть существует такая проколотая окрестность точки , на которой
.
Тогда существует предел сложной функции , и он равен :
.
Здесь – конечные или бесконечно удаленные точки: . Окрестности и соответствующие им пределы могут быть как двусторонние, так и односторонние.
Доказательство
Теорема о пределе сложной функции применяется в том случае, когда функция не определена в точке или имеет значение, отличное от предельного . Для применения этой теоремы, должна существовать проколотая окрестность точки , на которой множество значений функции не содержит точку :
.
Теорема о пределе функции от монотонной функции
Пусть функции и имеют пределы:
;
.
И пусть существует такая проколотая окрестность точки , на которой функция строго монотонна. Причем монотонность слева и справа от может иметь разные знаки.
Тогда существует предел сложной функции , и он равен :
.
Здесь – конечные или бесконечно удаленные точки: . Окрестности и соответствующие им пределы могут быть как двусторонние, так и односторонние.
Доказательство
Предел сложной непрерывной функции
Если функция непрерывна в точке , то знак предела можно применять к аргументу непрерывной функции:
.
Далее приводится теорема, соответствующая этому случаю.
Теорема о пределе непрерывной функции от функции
Пусть существует предел функции t = g(x) при x → x0, и он равен t0:
.
Здесь точка x0 может быть конечной или бесконечно удаленной: .
И пусть функция f(t) непрерывна в точке t0.
Тогда существует предел сложной функции f(g(x)), и он равен f(t0):
.
Бесконечно малые и бесконечно большие функции
Бесконечно малые функции
- Бесконечно малая функция
- при – это такая функция , предел которой при равен нулю:
.
Сумма, разность и произведение конечного числа бесконечно малых функций при является бесконечно малой функцией при .
Произведение функции, ограниченной на некоторой проколотой окрестности точки , на бесконечно малую при является бесконечно малой функцией при .
Для того, чтобы функция имела конечный предел , необходимо и достаточно, чтобы
,
где – бесконечно малая функция при .
Доказательства свойств изложены в разделе
«Свойства бесконечно малых функций».
Бесконечно большие функции
- Бесконечно большая функция
- при – это такая функция , предел которой при равен бесконечности:
.
Свойства бесконечно больших функций
Сумма или разность ограниченной функции, на некоторой проколотой окрестности точки , и бесконечно большой функции при является бесконечно большой функцией при .
Если функция является бесконечно большой при , а функция – ограничена, на некоторой проколотой окрестности точки , то
.
Если функция , на некоторой проколотой окрестности точки , удовлетворяет неравенству:
,
а функция является бесконечно малой при :
, и (на некоторой проколотой окрестности точки ), то
.
Cм. также: Свойства неравенств с бесконечно большими функциями ⇑.
Доказательства свойств изложены в разделе
«Свойства бесконечно больших функций».
Связь между бесконечно большими и бесконечно малыми функциями
Из двух предыдущих свойств вытекает связь между бесконечно большими и бесконечно малыми функциями.
Если функция являются бесконечно большой при , то функция является бесконечно малой при .
Если функция являются бесконечно малой при , и , то функция является бесконечно большой при .
Связь между бесконечно малой и бесконечно большой функцией можно выразить символическим образом:
, .
Если бесконечно малая функция имеет определенный знак при , то есть положительна (или отрицательна) на некоторой проколотой окрестности точки , то этот факт можно выразить так:
.
Точно также если бесконечно большая функция имеет определенный знак при , то пишут:
.
Тогда символическую связь между бесконечно малыми и бесконечно большими функциями можно дополнить следующими соотношениями:
, ,
, .
Дополнительные формулы, связывающие символы бесконечности, можно найти на странице
«Бесконечно удаленные точки и их свойства».
Пределы монотонных функций
- Строго возрастающая функция
- Функция , определенная на некотором множестве действительных чисел X называется строго возрастающей, если для всех таких что выполняется неравенство:
. - Строго убывающая функция
- Функция называется строго убывающей, если для всех таких что выполняется неравенство:
. - Неубывающая функция
- Функция называется неубывающей, если для всех ; :
. - Невозрастающая функция
- Функция называется невозрастающей, если для всех ; :
. - Монотонная функция
- Функция называется монотонной, если она неубывающая или невозрастающая.
Отсюда следует, что строго возрастающая функция также является неубывающей. Строго убывающая функция также является невозрастающей.
Теорема
Пусть функция не убывает на интервале , где .
Если она ограничена сверху числом M: , то существует конечный предел . Если не ограничена сверху, то .
Если ограничена снизу числом m: , то существует конечный предел . Если не ограничена снизу, то .
Если точки a и b являются бесконечно удаленными, то в выражениях под знаками пределов подразумевается, что .
Эту теорему можно сформулировать более компактно.
Пусть функция не убывает на интервале , где . Тогда существуют односторонние пределы в точках a и b:
;
.
Аналогичная теорема для невозрастающей функции.
Пусть функция не возрастает на интервале , где . Тогда существуют односторонние пределы:
;
.
Определение функции, верхней и нижней грани
- Функцией
- y = f(x) называется закон (правило), согласно которому, каждому элементу x множества X ставится в соответствие один и только один элемент y множества Y.
Элемент x ∈ X называют аргументом функции или независимой переменной.
Элемент y ∈ Y называют значением функции или зависимой переменной.
Множество X называется областью определения функции.
Множество элементов y ∈ Y, которые имеют прообразы в множестве X, называется областью или множеством значений функции.
Если это особо не оговорено, мы рассматриваем функции, области определения и множества значений которых принадлежат множеству действительных чисел.
- Ограниченная функция
- Действительная функция называется ограниченной сверху (снизу), если существует такое число M, что для всех выполняется неравенство:
.
Числовая функция называется ограниченной, если существует такое число M, что для всех :
. - Верхняя грань функции
- Верхней гранью или точной верхней границей действительной функции называют наименьшее из чисел, ограничивающее область ее значений сверху. То есть это такое число s, для которого для всех и для любого , найдется такой аргумент , значение функции от которого превосходит s′: .
Верхняя грань функции может обозначаться так:
. - Нижняя грань функции
- Нижней гранью или точной нижней границей действительной функции называют наибольшее из чисел, ограничивающее область ее значений снизу. То есть это такое число i, для которого для всех и для любого , найдется такой аргумент , значение функции от которого меньше чем i′: .
Нижняя грань функции может обозначаться так:
.
Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.
Автор: Олег Одинцов. Опубликовано: Изменено: