Методы решения физико-математических задач

Производная косинуса: (cos x)′

Производная косинуса
Представлено доказательство и вывод формулы для производной косинуса - cos(x). Примеры вычисления производных от cos 2x, cos 3x, cos nx, косинуса в квадрате, в кубе и в степени n. Формула производной косинуса n-го порядка.

Производная по переменной x от косинуса x равна минус синусу x:
( cos x )′ = – sin x.

Доказательство

Чтобы вывести формулу производной косинуса, воспользуемся определением производной:
.

Преобразуем это выражение, чтобы свести его к известным математическим законам и правилам. Для этого нам нужно знать четыре свойства.
1) Тригонометрические формулы. Нам понадобится следующая формула:
(1)   ;
2) Свойство непрерывности функции синус:
(2)   ;
3) Значение первого замечательного предела:
(3)   ;
4) Свойство предела от произведения двух функций:
Если    и  , то
(4)   .

Применяем эти законы к нашему пределу. Сначала преобразуем алгебраическое выражение
.
Для этого применим формулу
(1)   ;
В нашем случае
; . Тогда
;
;
;
.

Сделаем подстановку . При , . Используем свойство непрерывности (2):
.

Сделаем такую же подстановку и применим первый замечательный предел (3):
.

Поскольку пределы, вычисленные выше, существуют, то применяем свойство (4):

.

Тем самым мы получили формулу производной косинуса.

Примеры

Все примеры

Рассмотрим простые примеры нахождения производных от функций, содержащих косинус. Найдем производные от следующих функций:
y = cos 2x;   y = cos 3x;   y = cos nx;     y = cos 2 x;     y = cos 3 x   и   y = cos n x  

Пример 1

Все примеры

Найти производные от cos 2x, cos 3x и cos nx.

Решение

Исходные функции имеют похожий вид. Поэтому мы найдем производную от функции y = cos nx. Затем, в производную от cos nx, подставим n = 2 и n = 3. И, тем самым, получим формулы для производных от cos 2x и cos 3x.

Итак, находим производную от функции
y = cos nx.
Представим эту функцию от переменной x как сложную функцию, состоящую из двух функций:
1)   Функции , зависящей от переменной : ;
2)   Функции , зависящей от переменной : .
Тогда исходная функция является сложной (составной) функцией, составленной из функций и :
.

Найдем производную от функции по переменной x:
.
Найдем производную от функции по переменной :
.
Применяем формулу производной сложной функции.
.
Подставим :
(П1)   .

Теперь, в формулу (П1) подставим и :
;
.

Ответ

;
;
.

См. также
Все примеры вычисления производных с решениями > > >

Пример 2

Все примеры

Найти производные от косинуса в квадрате, косинуса в кубе и косинуса в степени n:
y = cos 2 x;   y = cos 3 x;   y = cos n x.

Решение

В этом примере также функции имеют похожий вид. Поэтому мы найдем производную от самой общей функции – косинуса в степени n:
y = cos n x.
Затем подставим n = 2 и n = 3. И, тем самым, получим формулы для производных от косинуса в квадрате и косинуса в кубе.

Итак, нам нужно найти производную от функции
.
Перепишем ее в более понятном виде:
.
Представим эту функцию как сложную функцию, состоящую из двух функций:
1)   Функции , зависящей от переменной : ;
2)   Функции , зависящей от переменной : .
Тогда исходная функция является сложной функцией, составленной из двух функций и :
.

Находим производную от функции по переменной x:
.
Находим производную от функции по переменной :
.
Применяем правило дифференцирования сложной функции.
.
Подставим :
(П2)   .

Теперь подставим и :
;
.

Далее мы можем применить формулу для произведения синуса и косинуса:
.
Тогда
.

Ответ

;
;
.

Производные высших порядков

Заметим, что производную от cos x первого порядка можно выразить через косинус следующим образом:
.

Найдем производную второго порядка, используя формулу производной сложной функции:

.
Здесь  .

Заметим, что дифференцирование cos x приводит к увеличению его аргумента на . Тогда производная n-го порядка имеет вид:
(5)   .

Более строго эту формулу можно доказать с помощью метода математической индукции. Доказательство для n-й производной синуса изложено на странице “Производная синуса”. Для n-й производной косинуса доказательство точно такое. Нужно только во всех формулах заменить sin на cos.

Автор: Олег Одинцов.     Опубликовано:

Меню