Методы решения физико-математических задач

Примеры решений задач с помощью второго замечательного предела

Примеры задач, решаемых с помощью второго замечательного предела
Подробные решения примеров с использованием второго замечательного предела и его следствий. Формулы, свойства и теоремы, применяемые при решении задач, допускающих решение с помощью второго замечательного предела.

Применяемые формулы, свойства и теоремы

Здесь мы рассмотрим примеры решений задач на вычисление пределов, в которых используется второй замечательный предел и его следствия.
Ниже перечислены формулы, свойства и теоремы, которые наиболее часто применяются в подобного рода вычислениях.

Здесь мы будем иметь дело со степенно-показательной функцией, у которой основание и показатель являются функциями от некоторой переменной: . Ее удобно представить как экспоненту: . В этой связи полезна следующая лемма.

Лемма о пределе степенно-показательной функции
Пусть – функции переменной x, имеющие конечные пределы:
. Здесь .
Тогда
.
Доказательство ⇓

В случае бесконечных пределов, или когда , мы проводим исследование произведения , применяя свойства пределов бесконечно больших и малых функций.

В случае и , мы имеем неопределенность вида единица в степени бесконечность. Для ее раскрытия используется второй замечательный предел.

Раскрытие неопределенности 1 в степени бесконечность

Пусть u и v есть функции от переменной x: . И пусть при . Тогда выражение является неопределенным при . Для раскрытия этой неопределенности, мы вводим переменную t из соотношения
.
Тогда . При .
;
.

Таким образом задача сводится к вычислению предела .

Доказательство леммы о пределе степенно-показательной функции

Формулировка ⇑

Представим степенно-показательную функцию в виде показательной функции:
.
Поскольку логарифмическая функция непрерывна на своей области определения, то по теореме о пределе непрерывной функции от функции,
.
По теореме о пределе произведения двух функций,
.
Поскольку показательная функция непрерывна на всей числовой оси, то по теореме о пределе непрерывной функции от функции,
.

Лемма доказана.

Примеры решений

Все примеры Далее мы приводим подробные решения с объяснениями следующих пределов:
,   ,   ,   ,   .

Пример 1

Все примеры ⇑ Найти предел:
.

Решение

При ,   . Это неопределенность вида один в степени бесконечность.

Выполняем преобразования.
;
.

Сделаем замену переменной . При . Применим второй замечательный предел:
.

Находим предел дроби, разделив числитель и знаменатель на x:
.

Применяем лемму о пределе степенно-показательной функции ⇑
.

Ответ

.

Пример 2

Все примеры ⇑ Найдите предел:
.

Решение

При ,   .   при . Это неопределенность вида один в степени бесконечность. Раскрываем ее с помощью второго замечательного предела.

Введем переменную t из соотношения: . Тогда при ,
.
.

Применим второй замечательный предел к основанию степени:
.

Найдем предел показателя степени. Для этого применим тригонометрическую формулу

и первый замечательный предел:

.

Применяем лемму о пределе степенно-показательной функции ⇑ учитывая, что при :
.

Ответ

.

Пример 3

Все примеры ⇑ Найти предел последовательности:
.

Решение

При . Элементы последовательности равны единице. Поэтому . Рассмотрим случай .

При . Это неопределенность вида единица в степени бесконечность. Для ее раскрытия применим второй замечательный предел.

Введем переменную t из соотношения: . Тогда при ,
.
.

Применим второй замечательный предел к основанию степени:
.

Найдем предел показателя степени. Для этого применим тригонометрическую формулу

и первый замечательный предел:

.

Применяем лемму о пределе степенно-показательной функции ⇑ учитывая, что при :
.
Эта формула справедлива и при .

Ответ

.

Пример 4

Все примеры ⇑ Найти предел:
.

Решение

Пусть . Рассмотрим функцию в проколотой окрестности точки , на которой . Для определения предела, функция должна быть определена на любой проколотой окрестности этой точки. Считаем, что . Тогда . При . Поэтому .
Теперь рассмотрим предел при .

При . У нас неопределенность вида 0/0.

Для ее раскрытия приведем степенно-показательную функцию к основанию e учитывая, что :
.
Согласно следствию второго замечательного предела:
.
В последнем множителе сделаем замену переменной:
.
При . Кроме этого, при . Тогда
.

Применяем арифметические свойства предела функции:
.
Это же значение является правильным и при .

Ответ

.

Пример 5

Все примеры ⇑ Найдите предел функции:
.

Решение с помощью второго замечательного предела и его следствий

При . Это неопределенность вида 0/0. Для ее раскрытия, применим следствия второго замечательного предела.

Преобразуем числитель дроби:

.
Преобразуем знаменатель:
.

Разделим числитель и знаменатель на x:
.
Чтобы не загромождать формулы, мы ввели обозначение .

Применяя первый замечательный предел и следствия второго, имеем:
;   ;   ;   ;   .
Применяем арифметические свойства предела функции:
.

Решение с помощью эквивалентных функций

Мы можем упростить решение, если применим теорему о замене функций эквивалентными в пределе частного. Считаем, что предел существует. Тогда мы можем заменить знаменатель эквивалентной функцией при . Из таблицы эквивалентных функций находим:
.

Получаем более простой предел:
.
Далее делаем преобразования аналогично предыдущему:
.
Поскольку при , то применяем следствие второго замечательного предела:
;
.
В дробях и заменим функции в числителе эквивалентными:
;
.

Применяем арифметические свойства предела функции:
.

Ответ

.

Автор: Олег Одинцов.     Опубликовано:   Изменено:

Меню