График обратной функции
Свойство симметрии графиков обратных функций
Пусть функция f(x) определена на некотором множестве X,и имеет множество значений Y: .
И пусть она имеет на множестве X обратную функцию f -1: .
Тогда графики прямой и обратной функций, построенные при значениях их аргументов и , соответственно, симметричны относительно прямой .
Пусть – произвольная точка графика прямой функции , с аргументом, принадлежащим множеству X:
(1) .
Построим точку , симметричную точке относительно прямой , и выразим ее координаты через координаты точки A.
Для этого через точку A проводим прямую, перпендикулярную прямой . Пусть C – точка пересечения этих прямых. Далее, на проведенной прямой, откладываем точку S, симметричную точке A относительно прямой . При этом
;
.
Из точек A и S опустим перпендикуляры на оси координат. Поскольку прямая составляет угол с осями координат, то и перпендикулярная ей прямая AS также составляет угол с осями координат. Тогда и пересекутся в точке D, принадлежащей прямой . При этом углы у оснований треугольников DAC и SDC равны . По этой причине они являются равнобедренными. А поскольку , то они конгруэнтны. Тогда , и, следовательно,
(2) .
В треугольниках и углы при вершинах O и D равны , а при вершинах равны . Поэтому они равнобедренные и подобные. А поскольку они имеют общее основание OD, то они конгруэнтны. Тогда
(3) .
Используя (2) и (3) имеем:
;
.
Итак, мы выразили координаты симметричной точки S через координаты точки A:
(4) ;
(5) .
Поскольку точка принадлежит графику функции f, то ее координаты связаны уравнением:
(1) .
Поскольку, по условию, f имеет обратную функцию, то
.
Подставляя (4) и (5) находим:
.
То есть мы получили, что симметричная точка S принадлежит графику обратной функции.
Так как мы выбрали точку A произвольно, то это относится ко всем точкам графика .
Все точки графика функции , симметрично отраженные относительно прямой , принадлежат графику обратной функции .
Далее мы можем поменять и местами. В результате получим, что
все точки графика функции , симметрично отраженные относительно прямой , принадлежат графику функции .
Отсюда следует, что графики функций и симметричны относительно прямой .
Свойство доказано.
Примеры графиков обратных функций
Некоторые функции являются непрерывными и строго монотонными на всей области определения. Поэтому они имеют обратные функции, и их графики симметричны относительно прямой . Например, кубическая парабола строго возрастает для всех x. Поэтому она имеет обратную функцию , график которой симметричен графику параболы относительно прямой .
Существуют функции, которые не являются монотонными на всей области определения. Однако можно указать интервал X, на котором такая функция определена, непрерывна и строго монотонна. В этом случае можно выполнить операцию сужения функции на множество X: . То есть рассматривать только значения аргумента, принадлежащие интервалу X. Тогда на этом интервале она будет иметь обратную функцию. В результате графики суженной функции и обратной функции будут симметричны относительно прямой .
Например, квадратичная парабола, , определена и непрерывна для всех x, но не является монотонной. Но она строго возрастает при , то есть на множестве . Тогда сужение параболы имеет обратную функцию . Их графики симметричны относительно прямой .
Тригонометрическая функция также не является монотонной, но она непрерывна и строго возрастает при . Тогда ее сужение имеет обратную функцию . Их графики также симметричны относительно прямой .
Ниже приводятся графики некоторых элементарных функций. Для некоторых из них выполнена операция сужения, и построен график обратной функции.
Автор: Олег Одинцов. Опубликовано: