Методы решения физико-математических задач

Определение и доказательство свойств показательной функции

Определение показательной функции
Рассмотрены свойства показательной функции на множестве натуральных, целых и рациональных чисел. Дается определение показательной функции на множестве действительных чисел. Приводится доказательство ее непрерывности и свойств.

Определение
Показательная функция f(n) = an, с основанием a, от натурального аргумента n – это произведение n множителей, каждый из которых равен a:
.
Здесь .

При она обладает следующими свойствами, вытекающих из правил умножения чисел:
(1.1)   a x > 0  при  a > 0;
(1.2)   строго возрастает при a > 1 и строго убывает при 0 < a < 1;
(1.3)   ;
(1.4)   ;
(1.5)   .

Если положить:
(1.6)   ,
(1.7)   ,
то показательная функция становится определенной и для целых чисел. При этом свойства (1.1-5) по прежнему выполняются, в которых , . Подробнее ⇓

Если положить:
(1.8)   ,
где , то показательная функция становится определенной и для рациональных чисел . При этом выполняются свойства (1.1-7). В них , . Подробнее ⇓

Далее, основываясь на свойствах показательной функции (1.1-8), определенной на множестве рациональных чисел, мы определяем эту функцию на множестве действительных чисел и даем доказательство ее свойств.

Лемма
Пусть последовательность рациональных чисел сходится к действительному числу x:
.
И пусть a > 0. Тогда существует предел последовательности :
,
и этот предел может зависеть от числа x, но не зависит от последовательности .
Доказательство ⇓

Определение показательной функции
Показательная функция f(x) = ax, с основанием a > 0 – это предел последовательности
,
где есть произвольная последовательность рациональных чисел, стремящаяся к x:
.

Это определение справедливо и в случае, если x является рациональным числом. При этом совпадает со значением показательной функции, определяемом на множестве рациональных чисел. Чтобы убедиться в этом, достаточно в качестве последовательности взять последовательность с постоянными членами .

Заметим, что для доказательства свойств показательной функции, нам достаточно выбрать любую, удобную для нас последовательность рациональных чисел , сходящуюся к x. Действительно, согласно лемме ⇑, значение не зависит от выбора последовательности.

Теорема. Свойства показательной функции
Показательная функция имеет следующие свойства:
(2.0)   определена, при , для всех ;  ⇓
(2.1)   при a ≠ 1 имеет множество значений ;  ⇓
(2.2)   строго возрастает при , строго убывает при , является постоянной при ;  ⇓
(2.3)   ;  ⇓
(2.3*)   ;  ⇓
(2.4)   ;  ⇓
(2.5)   ;  ⇓
(2.6)   ;  ⇓
(2.7)   ;  ⇓
(2.8)   непрерывна для всех ;  ⇓
(2.9)     при ;
  при .  ⇓
Доказательство ⇓

Определение показательной функции на множестве целых чисел

Исследуем вопрос – что будет, если для функции, обладающей свойствами (1.3-5), присвоить отрицательные значения аргумента? Положим
.
Умножим это уравнение на и воспользуемся свойством (1.3):
.
Поскольку , то мы получаем:
.
Отсюда , или
.
В частности, .

Таким образом, свойства (1.3-5) выполняются для отрицательных и нулевого значения n, если положить:
;
.
Тем самым мы определили значения показательной функции для целых чисел. Однако это возможно не для всех значений основания a. Поскольку деление на нуль не возможно, то .

Определение показательной функции на множестве рациональных чисел

Теперь рассмотрим вопрос об определении показательной функции для рациональных значений аргумента. Пусть есть рациональное число. Его можно представить в виде дроби:
,
где – целое, – натуральное.

Возьмем самый простой случай. Пусть . Рассмотрим уравнение:
.
Умножим его левую и правую части на себя n раз. То есть возведем в степень n и применим свойство (1.4):
;
(3.1)   .
Таким образом, есть корень степени n из a:
.
Для любого и для , существует единственное решение уравнения (3.1) в области действительных чисел (см. «Доказательство существования и единственности корня степени n»).

Далее мы используем свойства корней:
(3.2)   ;
(3.3)   .
(3.4)   .

В силу свойства (3.2), мы можем определить значения показательной функции для рациональных значений аргумента:
.

Используя свойства (1.3-7) для целых значений аргумента и свойства корней (3.2-4), можно доказать, что (1.3-7) выполняются и для рациональных значений аргумента показательной функции.

Доказательство леммы и свойств показательной функции

Доказательство леммы

Формулировка ⇑

1. Докажем существование предела
.

Поскольку последовательность сходится, то для нее выполняется условие Коши. Это означает, что имеется такая функция , при которой для любого выполняется неравенство:
(Л.1)     при  .

Подставим . Тогда
(Л.2)     при  .

1.1. Пусть .
Докажем, что условие Коши выполняется для последовательности . Применим лемму Бернулли. При имеем:
(Л.3)   .

Поскольку последовательность сходится к конечному числу, то она ограничена некоторым числом :
для всех n.
Поскольку показательная функция, определенная на множестве рациональных чисел строго возрастает при a > 1, то
для всех m.

Обозначим . В силу свойства (1.1), . Подставим в (Л.3) и применим условие Коши (Л.1). При имеем:
.
Если положить , то
при .

Итак, мы нашли такую функцию , при которой для любого ,
при .
То есть выполняется условие Коши для последовательности . Тогда на основании критерия Коши, эта последовательность сходится.

1.2. Теперь рассмотрим случай . Сведем его к предыдущему. Положим . Тогда , . Мы доказали, что последовательность сходится. Единицу в числителе можно рассматривать как элемент последовательности с постоянными членами, равными 1. Тогда, на основании арифметических свойств, существует предел частного последовательностей .

2. Теперь докажем, что предел не зависит от выбора последовательности .
То есть пусть мы имеем две, сходящиеся к x, последовательности и :
.
Мы доказали, что существуют пределы
  и  .
Теперь нам нужно доказать, что .

2.1. Пусть .
Рассмотрим разность последовательностей и , то есть последовательность , элементы которой равны разности элементов и . Согласно арифметическим свойствам, существует предел разности, который равен
.

Поскольку последовательности и сходятся к x, то, согласно определению предела последовательности, существуют такие функции и , так что для любого ,
при ,
при .
Положим и пусть . Тогда при имеем:
  и  ;
;
.
Воспользуемся тем, что конечное число членов последовательности не влияет на существование и величину предела. Отбросим первые членов у последовательностей и . Тогда
.

Применяем лемму Бернулли, аналогично предыдущему:
.
Воспользуемся свойствами пределов последовательностей, связанных неравенствами и вынесем постоянные за знак предела:
.
Применим арифметические свойства пределов:
.
Отсюда .

2.2. Пусть . Тогда ,
.
Предел последовательности не зависит от выбора . Поэтому и предел последовательности также не зависит от выбора .

Лемма доказана.

Доказательство свойств показательной функции

Формулировка ⇑

Порядок доказательств свойств показательной функции отличается от порядка, в котором расположены свойства. Это сделано для удобства изложения. Последующие пункты могут использовать свойства, доказанные в первую очередь.

2.А. Сначала докажем, что
(2.А.1)   ax > 0.
Согласно определению ⇑,
.
Поскольку последовательность рациональных чисел сходится к конечному числу x, то она ограничена:
.
Поскольку функция , определенная на множестве рациональных чисел монотонна (см. (1.2) ⇑ ), то она достигает своего минимального значения на границе рассматриваемого отрезка. Тогда
(2.А.2)   .
Здесь при нужно взять знак “плюс”. При – знак “минус”. При , функция постоянна, . Можно взять любой знак. Выполним в (2.А.2) предельный переход , пользуясь свойствами пределов последовательностей, связанными неравенствами и определением показательной функции ⇑:
;
.
Согласно свойству (1.1) ⇑, . Тогда и
.

2.0. Поскольку в определении ⇑, , а аргумент x является произвольным числом и ничем не ограничен, то показательная функция определена при для всех x. Ее областью определения является множество действительных чисел .

2.6.  . Здесь аргумент является рациональным числом. Мы считаем, что свойства показательной функции на множестве рациональных чисел известны. Мы добавили пункт 2.6, чтобы объединить все свойства вместе.

2.2. Докажем строгую монотонность показательной функции при a ≠ 1. То есть, если , то
при ;
при ;
при .

Итак, пусть . Выберем рациональные числа и , удовлетворяющие неравенствам:
.
Возьмем последовательности и , сходящиеся к и :
,
элементы которых удовлетворяют неравенствам:
,   .
Тогда
.

2.2.1. Пусть .
Поскольку показательная функция, определенная на множестве рациональных чисел, при , строго возрастает, то
(2.2.1)   .
Применим свойства пределов последовательностей, связанных неравенствами и определение показательной функции ⇑:
;
.
Отсюда .

2.2.2. Пусть .
В этом случае, показательная функция, определенная на множестве рациональных чисел, строго убывает. Доказательство такое же, как и в пункте 2.2.1, только начиная с (2.2.1), нужно поменять знаки неравенств:
(2.2.2)   ;
;
;
.

2.2.3. Пусть .
Показательная функция , определенная на множестве рациональных чисел , является постоянной . Последовательность является последовательностью из постоянных элементов. Поэтому ее предел также равен единице:
;
  для всех x.

2.3. Докажем, что
.
Пусть и – произвольные последовательности рациональных чисел, сходящиеся к и :
.
Применим свойство предела суммы для последовательности :
(2.3.1)   .
Рассмотрим последовательность . Поскольку, согласно лемме ⇑, и сходятся, то применим свойство предела произведения последовательностей иопределение показательной функции ⇑:
.
С другой стороны, применяя (2.3.1) и свойство (1.3) ⇑ показательной функции от рационального аргумента, имеем:
.
Отсюда
.

2.5. Докажем, что
.
Все рассуждения и обозначения такие же, что и при доказательстве свойства (2.3) ⇑. Аналогичным образом, применяя свойство (1.5) ⇑ для рационального аргумента, имеем:
.

2.7. Докажем, что
.
Аналогично предыдущему, имеем:
.
Здесь мы учли, что и применили свойство предела частного последовательностей.

2.3*. Применяя свойства (2.3) ⇑ и (2.7) ⇑, имеем:
.

2.8. Докажем непрерывность показательной функции.
2.8.1. Пусть .

Воспользуемся определением непрерывности функции в терминах приращений. Применяем свойство ax > 0 и (2.3) ⇑
.
Поскольку есть сколь угодно малая величина, то считаем, что . Применим лемму Бернулли для действительных чисел:
.
Тогда
.
Применяем свойство пределов функций, связанных неравенством:
;
;
.

2.4. Докажем, что
.

2.4.1. Рассмотрим случай .
Пусть – натуральные числа. Тогда
.
Применяя свойство (2.3) ⇑, имеем:
;
(2.4.1)   .

Теперь исследуем, что такое . Введем обозначение:
(2.4.2)   .
Возведем в n-ю степень. То есть умножим левую и правую части на себя n раз, и применим (2.4.1):
;
.
Поскольку ax > 0, то b есть корень степени n из положительного числа :
. Подставляя (2.4.2), имеем:
(2.4.3)   .

Применяя свойства (2.4.1) и (2.4.3), для произвольного положительного рационального числа получаем:
;
(2.4.4)   .

Пусть есть произвольная последовательность рациональных чисел, сходящаяся к x2:
(2.4.5)   .
Применяя (2.4.4), имеем:
.
Рассмотрим последовательность . Учитывая (2.4.5), и применяя арифметические свойства сходящихся последовательностей, получаем, что сходится к :
.
Выше мы доказали, что показательная функция непрерывна ⇑. Используя определение непрерывности функции по Гейне, получаем:
;
.

2.4.2. Рассмотрим случай .
Тогда . Применяя свойство (2.7) ⇑, имеем:
.

2.4.3. Теперь пусть .
Применяем (2.6) ⇑ Тогда .
Поскольку ax1 > 0, то
;
.

2.9.
2.9.1. Пусть .
2.9.1.1. Докажем, что
.
Поскольку функция монотонна ⇑, то согласно теореме о пределе монотонной функции, она имеет конечный или бесконечный предел
.
Поскольку функция имеет предел A, то согласно определению предела функции по Гейне, для любой последовательности , сходящейся к , последовательность сходится к A:
.
Возьмем последовательность натуральных чисел . Она сходится к : . Тогда
.

Для вычисления этого предела, применим неравенство Бернулли:
.
При , правая часть неравенства стремится к . Применяя свойство неравенств бесконечно больших последовательностей, находим, что
.
Отсюда ,  .

2.9.1.2. Докажем, что
.
Сделаем подстановку . Применим свойство (2.7) ⇑ и свойства бесконечно малых и бесконечно больших функций:
.

2.9.2. Пусть .
Сделаем подстановку . Тогда ,
;
.

2.1. Докажем, что при a ≠ 1 показательная функция имеет множество значений .
Рассмотрим функцию на отрезке , где – произвольные числа. Поскольку функция строго монотонна ⇑ и определена для всех x, то она достигает минимума и максимума на концах отрезка – в точках и . Поскольку функция непрерывна ⇑, то согласно теореме Больцано – Коши о промежуточном значении, она принимает все значения из отрезка , если и , если . Устремляя и , и используя найденные выше пределы ⇑ получаем, что множеством значений показательной функции является множество положительных чисел .

Теорема доказана.

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

.     Опубликовано: