Методы решения физико-математических задач

Логарифм - свойства, формулы, график

Определение и свойства логарифма
Приведены основные свойства логарифма, график логарифма, область определения, множество значений, основные формулы, возрастание и убывание. Рассмотрено нахождение производной логарифма. А также интеграл, разложение в степенной ряд и представление посредством комплексных чисел.

Определение логарифма

Логарифм с основанием a
– это функция  y(x) = loga x, обратная к показательной функции с основанием a:   x(y) = a y.

В дальнейшем будем считать, что основание логарифма a положительное, не равное единице число: .

Десятичный логарифм
– это логарифм по основанию числа 10:   lg x ≡ log10 x.
Натуральный логарифм
– это логарифм по основанию числа e:   ln x ≡ loge x.

2,718281828459045...;
.

Графики логарифма

Графики логарифма
Графики логарифма y = loga x при различных значениях основания a.

График логарифма получается из графика показательной функции зеркальным отражением относительно прямой y = x. Слева изображены графики функции y = loga x для четырех значений основания логарифма: a = 2, a = 8, a = 1/2 и a = 1/8. На графике видно, что при a > 1 логарифм монотонно возрастает. С увеличением x рост существенно замедляется. При 0 < a < 1 логарифм монотонно убывает.

Свойства логарифма

См. также «Определение и доказательство свойств логарифма».

Область определения, множество значений, возрастание, убывание

Логарифм является монотонной функцией, поэтому экстремумов не имеет. Основные свойства логарифма представлены в таблице.

 
Область определения 0 < x < + ∞ 0 < x < + ∞
Область значений – ∞ < y < + ∞ – ∞ < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 x = 1 x = 1
Точки пересечения с осью ординат, x = 0 нет нет
+ ∞ – ∞
– ∞ + ∞

Частные значения


Логарифм по основанию 10 называется десятичным логарифмом и обозначается так:

Логарифм по основанию e называется натуральным логарифмом:

Основные формулы логарифмов

Свойства логарифма, вытекающие из определения обратной функции:

Основное свойство логарифмов и его следствия



Формула замены основания

Логарифмирование
– это математическая операция взятия логарифма. При логарифмировании, произведения сомножителей преобразуются в суммы членов.
Потенцирование
– это математическая операция обратная логарифмированию. При потенцировании заданное основание возводится в степень выражения, над которым выполняется потенцирование. При этом суммы членов преобразуются в произведения сомножителей.

Доказательство основных формул логарифмов

Формулы, связанные с логарифмами вытекают из формул для показательных функций и из определения обратной функции.

Рассмотрим свойство показательной функции
.
Тогда
.
Применим свойство показательной функции
:
.

Докажем формулу замены основания.
;
.
Полагая c = b, имеем:

Обратная функция

Обратной для логарифма по основанию a является показательная функция с показателем степени a.

Если    ,   то   

Если    ,   то   

Производная логарифма

Производная логарифма от модуля x:
.
Производная n-го порядка:
.
Вывод формул > > >

Для нахождения производной логарифма, его нужно привести к основанию e.
;
.

Интеграл

Интеграл от логарифма вычисляется интегрированием по частям: .
Итак,

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z:
.
Выразим комплексное число z через модуль r и аргумент φ:
.
Тогда, используя свойства логарифма, имеем:
.
Или

Однако, аргумент φ определен не однозначно. Если положить
, где n - целое,
то будет одним и тем же числом при различных n.

Поэтому логарифм, как функция от комплексного переменного, является не однозначной функцией.

Разложение в степенной ряд

При имеет место разложение:

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Автор: Олег Одинцов.     Опубликовано:   Изменено:

Меню