Методы решения физико-математических задач

Арксинус, арккосинус - свойства, графики, формулы

Графики arcsin x и arccos x
Даны свойства арксинуса и арккосинуса, их графики, формулы, таблица арксинусов и арккосинусов. Выражения через комплексные числа, гиперболические функции. Производные, интегралы, разложение в степенной ряд.

Арксинус, arcsin

Определение и обозначения

Арксинус ( y = arcsin x )
 – это функция, обратная к синусу ( x = sin y ). Он имеет область определения  –1 ≤ x ≤ 1  и множество значений  –π/2 ≤ y ≤ π/2.
sin(arcsin x) = x     ;
arcsin(sin x) = x     .

Арксинус иногда обозначают так:
.

График функции арксинус

График функции y=arcsin(x)
График функции   y = arcsin x

График арксинуса получается из графика синуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом   , на котором функция монотонна. Такое определение называют главным значением арксинуса.

Арккосинус, arccos

Определение и обозначения

Арккосинус ( y = arccos x )
 – это функция, обратная к косинусу ( x = cos y ). Он имеет область определения  –1 ≤ x ≤ 1  и множество значений  0 ≤ y ≤ π.
cos(arccos x) = x     ;
arccos(cos x) = x     .

Арккосинус иногда обозначают так:
.

График функции арккосинус

График функции y=arccos(x)
График функции   y = arccos x

График арккосинуса получается из графика косинуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом   , на котором функция монотонна. Такое определение называют главным значением арккосинуса.

Четность

Функция арксинус является нечетной:
arcsin(–x) = arcsin(–sin arcsin x) = arcsin(sin(–arcsin x)) = – arcsin x

Функция арккосинус не является четной или нечетной:
arccos(–x) = arccos(–cos arccos x) = arccos(cos(π–arccos x)) = π – arccos x ≠ ± arccos x

Свойства - экстремумы, возрастание, убывание

Функции арксинус и арккосинус непрерывны на своей области определения (см. доказательство непрерывности). Основные свойства арксинуса и арккосинуса представлены в таблице.

  y = arcsin x y = arccos x
Область определения и непрерывность 1 ≤ x ≤ 1 1 ≤ x ≤ 1
Область значений  
Возрастание, убывание монотонно возрастает монотонно убывает
Максимумы    
Минимумы    
Нули, y = 0 x = 0 x = 1
Точки пересечения с осью ординат, x = 0 y = 0 y = π/2

Таблица арксинусов и арккосинусов

В данной таблице представлены значения арксинусов и арккосинусов, в градусах и радианах, при некоторых значениях аргумента.

 x arcsin x arccos x
град. рад. град. рад.
– 1 – 90° 180° π
– 60° 150°
– 45° 135°
– 30° 120°
0 0 90°
30° 60°
45° 45°
60° 30°
1 90° 0

≈ 0,7071067811865476
≈ 0,8660254037844386

Формулы

См. Вывод формул обратных тригонометрических функций



Формулы суммы и разности


     при или

     при и

     при и


     при или

     при и

     при и


     при

     при


     при

     при

Выражения через логарифм, комплексные числа

См. Вывод формул


Выражения через гиперболические функции




Производные

;
.
См. Вывод производных арксинуса и арккосинуса > > >

Производные высших порядков:
,
где – многочлен степени . Он определяется по формулам:
;
;
.

См. Вывод производных высших порядков арксинуса и арккосинуса > > >

Интегралы

Делаем подстановку   x = sin t. Интегрируем по частям, учитывая что  –π/2 ≤ t ≤ π/2,  cos t ≥ 0:
.

Выразим арккосинус через арксинус:
.

Разложение в ряд

При   |x| < 1   имеет место следующее разложение:
;
.

Обратные функции

Обратными к арксинусу и арккосинусу являются синус и косинус, соответственно.

Следующие формулы справедливы на всей области определения:
sin(arcsin x) = x    
cos(arccos x) = x    .

Следующие формулы справедливы только на множестве значений арксинуса и арккосинуса:
arcsin(sin x) = x     при
arccos(cos x) = x     при .

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Автор: Олег Одинцов.     Опубликовано:   Изменено:

Меню